


default search action
17th AIME 2019: Poznan, Poland
- David Riaño, Szymon Wilk, Annette ten Teije

:
Artificial Intelligence in Medicine - 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26-29, 2019, Proceedings. Lecture Notes in Computer Science 11526, Springer 2019, ISBN 978-3-030-21641-2
Invited Speakers
- Anthony Chang:

Common Misconceptions and Future Directions for AI in Medicine: A Physician-Data Scientist Perspective. 3-6 - Ivana Bartoletti:

AI in Healthcare: Ethical and Privacy Challenges. 7-10
Deep Learning
- Jeongmin Lee

, Milos Hauskrecht:
Recent Context-Aware LSTM for Clinical Event Time-Series Prediction. 13-23 - Ying-Feng Hsu

, Makiko Ito, Takumi Maruyama, Morito Matsuoka, Nicolas Jung, Yuki Matsumoto, Daisuke Motooka, Shota Nakamura
:
Deep Learning Approach for Pathogen Detection Through Shotgun Metagenomics Sequence Classification. 24-30 - Tomasz Grzywalski

, Riccardo Belluzzo, Mateusz Piecuch, Marcin Szajek, Anna Breborowicz, Anna Pastusiak
, Honorata Hafke-Dys
, Jedrzej Kocinski
:
Fully Interactive Lungs Auscultation with AI Enabled Digital Stethoscope. 31-35 - Francisco Luna-Perejón

, Javier Civit-Masot
, Isabel Amaya-Rodriguez, Lourdes Duran-Lopez, Juan Pedro Dominguez-Morales
, Antón Civit Balcells, Alejandro Linares-Barranco:
An Automated Fall Detection System Using Recurrent Neural Networks. 36-41 - Giovanna Nicora

, Simone Marini
, Ivan Limongelli
, Ettore Rizzo, Stefano Montoli, Francesca Floriana Tricomi
, Riccardo Bellazzi
:
A Semi-supervised Learning Approach for Pan-Cancer Somatic Genomic Variant Classification. 42-46 - Subhrajit Roy

, Isabell Kiral-Kornek
, Stefan Harrer
:
ChronoNet: A Deep Recurrent Neural Network for Abnormal EEG Identification. 47-56 - Xiaoying Tan

, Gerd Reis, Didier Stricker
:
Convolutional Recurrent Neural Network for Bubble Detection in a Portable Continuous Bladder Irrigation Monitor. 57-66 - Rami Ben-Ari, Yoel Shoshan, Tal Tlusty:

Mammogram Classification with Ordered Loss. 67-76
Simulation
- Daniele Pala, John H. Holmes, José Pagán, Enea Parimbelli, Marica Teresa Rocca, Vittorio Casella

, Riccardo Bellazzi
:
Agent-Based Models and Spatial Enablement: A Simulation Tool to Improve Health and Wellbeing in Big Cities. 79-83 - Camilo Cáceres

, João Maurício Rosário
, Dario Amaya
:
Towards Health 4.0: e-Hospital Proposal Based Industry 4.0 and Artificial Intelligence Concepts. 84-89
Knowledge Representation
- Martin Michalowski

, Szymon Wilk, Wojtek Michalowski
, Marc Carrier:
MitPlan: A Planning Approach to Mitigating Concurrently Applied Clinical Practice Guidelines. 93-103 - Hassan Ismail Fawaz, Germain Forestier

, Jonathan Weber, François Petitjean, Lhassane Idoumghar, Pierre-Alain Muller:
Automatic Alignment of Surgical Videos Using Kinematic Data. 104-113 - Giovanna Nicora

, Ivan Limongelli
, Riccardo Cova, Matteo Giovanni Della Porta
, Luca Malcovati
, Mario Cazzola, Riccardo Bellazzi
:
A Rule-Based Expert System for Automatic Implementation of Somatic Variant Clinical Interpretation Guidelines. 114-119 - Paolo Terenziani

, Antonella Andolina:
Considering Temporal Preferences and Probabilities in Guideline Interaction Analysis. 120-124 - Seyedsalim Malakouti, Milos Hauskrecht:

Predicting Patient's Diagnoses and Diagnostic Categories from Clinical-Events in EHR Data. 125-130 - Maciej Piernik

, Joanna Solomiewicz, Arkadiusz Jachnik:
Assessing the Effectiveness of Sequences of Treatments Using Sequential Patterns. 131-135
Probabilistic Models
- Jidapa Kraisangka, Marek J. Druzdzel, Lisa C. Lohmueller, Manreet K. Kanwar

, James F. Antaki, Raymond L. Benza
:
Bayesian Network vs. Cox's Proportional Hazard Model of PAH Risk: A Comparison. 139-149 - David Cuadrado

, David Riaño
, Josep Gómez
, María Bodí, Gonzalo Sirgo, Federico Esteban, Rafael García, Alejandro Rodríguez
:
Pursuing Optimal Prediction of Discharge Time in ICUs with Machine Learning Methods. 150-154 - Elisa Salvi, Enea Parimbelli, Lucia Sacchi

, Silvana Quaglini, Erika Maggi, Lorry Duchoud, Gian Luca Armas, John De Almeida, Christian Simon:
Towards the Economic Evaluation of Two Mini-invasive Surgical Techniques for Head&Neck Cancer: A Customizable Model for Different Populations. 155-159 - Negar Safinianaini, Henrik Boström, Viktor Kaldo

:
Gated Hidden Markov Models for Early Prediction of Outcome of Internet-Based Cognitive Behavioral Therapy. 160-169 - Marcos L. P. Bueno, Arjen Hommersom

, Peter J. F. Lucas, Joost G. E. Janzing:
A Data-Driven Exploration of Hypotheses on Disease Dynamics. 170-179 - Agastya Silvina, Juliana Bowles

, Peter S. Hall
:
On Predicting the Outcomes of Chemotherapy Treatments in Breast Cancer. 180-190 - Harry Freitas Da Cruz, Boris Pfahringer, Frederic Schneider, Alexander Meyer, Matthieu-P. Schapranow

:
External Validation of a "Black-Box" Clinical Predictive Model in Nephrology: Can Interpretability Methods Help Illuminate Performance Differences? 191-201
Behavior Monitoring
- Emre Besler, Yearnchee Curtis Wang, Terence Chan, Alan Varteres Sahakian

:
Classifying Small Volumes of Tissue for Real-Time Monitoring Radiofrequency Ablation. 205-215 - Patrice C. Roy, William Van Woensel, Andrew Wilcox, Syed Sibte Raza Abidi

:
Mobile Indoor Localization with Bluetooth Beacons in a Pediatric Emergency Department Using Clustering, Rule-Based Classification and High-Level Heuristics. 216-226 - Elisa Salvi, Silvia Panzarasa, Riccardo Bagarotti, Michela Picardi

, Rosangela Boninsegna, Irma Sterpi, Massimo Corbo
, Giordano Lanzola, Silvana Quaglini, Lucia Sacchi
:
NONCADO: A System to Prevent Falls by Encouraging Healthy Habits in Elderly People. 227-232 - Yan Zheng, Paolo Fraccaro, Niels Peek:

The Minimum Sampling Rate and Sampling Duration When Applying Geolocation Data Technology to Human Activity Monitoring. 233-238
Clustering, Natural Language Processing, and Decision Support
- Syed Sibte Raza Abidi

, Jaber Rad
, Ashraf Abusharekh, Patrice C. Roy, William Van Woensel, Samina Raza Abidi
, Calvino Cheng, Bryan Crocker, Manal Elnenaei
:
AI-Driven Pathology Laboratory Utilization Management via Data- and Knowledge-Based Analytics. 241-251 - Vincent Jorn Menger

, Marco Spruit
, Wouter van der Klift, Floor Scheepers:
Using Cluster Ensembles to Identify Psychiatric Patient Subgroups. 252-262 - Anita Valmarska, Dragana Miljkovic, Marko Robnik-Sikonja, Nada Lavrac:

Connection Between the Parkinson's Disease Subtypes and Patients' Symptoms Progression. 263-268 - Antonio López Martínez-Carrasco

, Jose M. Juarez, Manuel Campos
, Antonio Morales Nicolás
, Francisco Palacios, Lucía López-Rodríguez:
Interpretable Patient Subgrouping Using Trace-Based Clustering. 269-274 - Tsanta Randriatsitohaina, Thierry Hamon

:
Extracting Food-Drug Interactions from Scientific Literature: Tackling Unspecified Relation. 275-280 - Sandhya Prabhakaran, Julia E. Vogt

:
Bayesian Clustering for HIV1 Protease Inhibitor Contact Maps. 281-285 - Gilles Vandewiele

, Isabelle Dehaene
, Olivier Janssens, Femke Ongenae, Femke De Backere
, Filip De Turck
, Kristien Roelens, Sofie Van Hoecke, Thomas Demeester
:
Time-to-Birth Prediction Models and the Influence of Expert Opinions. 286-291 - Mariana R. Neves, D. William R. Marsh

:
Modelling the Impact of AI for Clinical Decision Support. 292-297 - Natalia Viani

, Rashmi Patel
, Robert Stewart
, Sumithra Velupillai
:
Generating Positive Psychosis Symptom Keywords from Electronic Health Records. 298-303 - Vaishnavi Ameya Murukutla

, Elie Cattan, Olivier Palombi, Rémi Ronfard
:
Text-to-Movie Authoring of Anatomy Lessons. 304-308
Feature Selection
- Christopher L. Bartlett, Stephen J. Glatt, Isabelle Bichindaritz:

Machine Learning and Feature Selection for the Classification of Mental Disorders from Methylation Data. 311-321 - Chirath Hettiarachchi

, Charith Chitraranjan:
A Machine Learning Approach to Predict Diabetes Using Short Recorded Photoplethysmography and Physiological Characteristics. 322-327 - Josephine French, Cong Chen, Katherine Henson, Brian Shand, Patrick Ferris, Josh Pencheon, Sally Vernon, Meena Rafiq, David Howe

, Georgios Lyratzopoulos
, Jem Rashbass:
Identification of Patient Prescribing Predicting Cancer Diagnosis Using Boosted Decision Trees. 328-333
Image Processing
- Carlos González, Pedro Bibiloni, Manuel González Hidalgo

, Arnau Mir
, Sebastià Rubí:
Automatic Image-Derived Estimation of the Arterial Whole-Blood Input Function from Dynamic Cerebral PET with ^18 F-Choline. 337-346 - Md. Abu Sayed

, Sajib Saha, G. M. Atiqur Rahaman
, Tanmai K. Ghosh, Yogesan Kanagasingam:
A Semi-supervised Approach to Segment Retinal Blood Vessels in Color Fundus Photographs. 347-351
General Machine Learning
- Gilles Vandewiele

, Isabelle Dehaene
, Olivier Janssens, Femke Ongenae, Femke De Backere
, Filip De Turck
, Kristien Roelens, Sofie Van Hoecke, Thomas Demeester
:
A Critical Look at Studies Applying Over-Sampling on the TPEHGDB Dataset. 355-364 - Chiara Picardi, Ibrahim Habli:

Perspectives on Assurance Case Development for Retinal Disease Diagnosis Using Deep Learning. 365-370 - Ananya Rajagopalan

, Marcus Vollmer
:
Rapid Detection of Heart Rate Fragmentation and Cardiac Arrhythmias: Cycle-by-Cycle rr Analysis, Supervised Machine Learning Model and Novel Insights. 371-375 - Linda Lapp

, Matt-Mouley Bouamrane
, Kimberley Kavanagh
, Marc Roper
, David Young
, Stefan Schraag
:
Evaluation of Random Forest and Ensemble Methods at Predicting Complications Following Cardiac Surgery. 376-385 - Matteo Mantovani

, Carlo Combi, Milos Hauskrecht:
Mining Compact Predictive Pattern Sets Using Classification Model. 386-396
Unsupervised Learning
- Arianna Dagliati

, Nophar Geifman
, Niels Peek, John H. Holmes, Lucia Sacchi
, Seyed Erfan Sajjadi, Allan Tucker:
Inferring Temporal Phenotypes with Topological Data Analysis and Pseudo Time-Series. 399-409 - Luca Corinzia, Jesse Provost, Alessandro Candreva

, Maurizio Tamarasso, Francesco Maisano
, Joachim M. Buhmann:
Unsupervised Mitral Valve Segmentation in Echocardiography with Neural Network Matrix Factorization. 410-419 - Teodora Matic, Somayeh Aghanavesi, Mevludin Memedi, Dag Nyholm

, Filip Bergquist, Vida Groznik
, Jure Zabkar, Aleksander Sadikov:
Unsupervised Learning from Motion Sensor Data to Assess the Condition of Patients with Parkinson's Disease. 420-424

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














