


default search action
21st CPAIOR 2024: Uppsala, Sweden - Part II
- Bistra Dilkina

:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research - 21st International Conference, CPAIOR 2024, Uppsala, Sweden, May 28-31, 2024, Proceedings, Part II. Lecture Notes in Computer Science 14743, Springer 2024, ISBN 978-3-031-60601-4 - Christoph Jabs

, Jeremias Berg
, Matti Järvisalo
:
Core Boosting in SAT-Based Multi-objective Optimization. 1-19 - Connor Lawless, Oktay Günlük:

Fair Minimum Representation Clustering. 20-37 - Matthew J. McIlree

, Ciaran McCreesh
, Jakob Nordström
:
Proof Logging for the Circuit Constraint. 38-55 - Gioni Mexi

, Somayeh Shamsi
, Mathieu Besançon
, Pierre Le Bodic
:
Probabilistic Lookahead Strong Branching via a Stochastic Abstract Branching Model. 56-73 - Mohsen Nafar, Michael Römer

:
Lookahead, Merge and Reduce for Compiling Relaxed Decision Diagrams for Optimization. 74-82 - Rahul Patel

, Elias B. Khalil
:
LEO: Learning Efficient Orderings for Multiobjective Binary Decision Diagrams. 83-110 - Felipe de Carvalho Pereira

, Pedro J. de Rezende
, Tallys H. Yunes
:
Minimizing the Cost of Leveraging Influencers in Social Networks: IP and CP Approaches. 111-127 - Egon Persak

, Miguel F. Anjos
:
Learning Deterministic Surrogates for Robust Convex QCQPs. 128-140 - Zhongdi Qu, Marc Grimson, Yue Mao, Sebastian Heilpern, Imanol Miqueleiz, Felipe Siqueira Pacheco, Alexander Flecker, Carla P. Gomes:

Strategies for Compressing the Pareto Frontier: Application to Strategic Planning of Hydropower in the Amazon Basin. 141-157 - Noah Schutte

, Krzysztof Postek
, Neil Yorke-Smith
:
Improving Metaheuristic Efficiency for Stochastic Optimization by Sequential Predictive Sampling. 158-175 - Ajdin Sumic, Alessandro Cimatti, Andrea Micheli, Thierry Vidal:

SMT-Based Repair of Disjunctive Temporal Networks with Uncertainty: Strong and Weak Controllability. 176-192 - Bo Tang

, Elias B. Khalil
:
CaVE: A Cone-Aligned Approach for Fast Predict-then-optimize with Binary Linear Programs. 193-210 - Charles Thomas

, Pierre Schaus
:
A Constraint Programming Approach for Aircraft Disassembly Scheduling. 211-220 - Jiatai Tong, Junyang Cai, Thiago Serra:

Optimization over Trained Neural Networks: Taking a Relaxing Walk. 221-233 - Kim van den Houten

, David M. J. Tax
, Esteban Freydell
, Mathijs de Weerdt
:
Learning from Scenarios for Repairable Stochastic Scheduling. 234-242 - Andrea Visentin

, Aodh Ó Gallchóir, Jens Kärcher
, Herbert Meyr
:
Explainable Algorithm Selection for the Capacitated Lot Sizing Problem. 243-252 - Bastián Véjar, Gaël Aglin, Ali Irfan Mahmutogullari, Siegfried Nijssen, Pierre Schaus, Tias Guns

:
An Efficient Structured Perceptron for NP-Hard Combinatorial Optimization Problems. 253-262 - Adrian Wurm

:
Robustness Verification in Neural Networks. 263-278 - Chao Yin, Quentin Cappart, Gilles Pesant:

An Improved Neuro-Symbolic Architecture to Fine-Tune Generative AI Systems. 279-288 - Haoruo Zhao, Hassan L. Hijazi, Haydn Thomas Jones, Juston Moore, Mathieu Tanneau

, Pascal Van Hentenryck:
Bound Tightening Using Rolling-Horizon Decomposition for Neural Network Verification. 289-303 - Mehdi Zouitine, Ahmad Berjaoui

, Agnès Lagnoux, Clément Pellegrini, Emmanuel Rachelson:
Learning Heuristics for Combinatorial Optimization Problems on K-Partite Hypergraphs. 304-314

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














