


default search action
MIDOG/MOOD/Learn2Reg@MICCAI 2021: Strasbourg, France
- Marc Aubreville
, David Zimmerer
, Mattias P. Heinrich
:
Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis - MICCAI 2021 Challenges: MIDOG 2021, MOOD 2021, and Learn2Reg 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27 - October 1, 2021, Proceedings. Lecture Notes in Computer Science 13166, Springer 2022, ISBN 978-3-030-97280-6
MIDOG
- Frauke Wilm
, Christian Marzahl
, Katharina Breininger
, Marc Aubreville
:
Domain Adversarial RetinaNet as a Reference Algorithm for the MItosis DOmain Generalization Challenge. 5-13 - Jack Breen
, Kieran Zucker
, Nicolas M. Orsi
, Nishant Ravikumar
:
Assessing Domain Adaptation Techniques for Mitosis Detection in Multi-scanner Breast Cancer Histopathology Images. 14-22 - Youjin Chung
, Jihoon Cho
, Jinah Park
:
Domain-Robust Mitotic Figure Detection with Style Transfer. 23-31 - Ramin Nateghi, Fattaneh Pourakpour:
Two-Step Domain Adaptation for Mitotic Cell Detection in Histopathology Images. 32-39 - Rutger H. J. Fick, Alireza Moshayedi, Gauthier Roy, Jules Dedieu, Stéphanie Petit, Saima Ben Hadj:
Domain-Specific Cycle-GAN Augmentation Improves Domain Generalizability for Mitosis Detection. 40-47 - Mostafa Jahanifar
, Adam J. Shephard
, Neda Zamanitajeddin
, Raja Muhammad Saad Bashir, Mohsin Bilal
, Syed Ali Khurram
, Fayyaz A. Minhas
, Nasir M. Rajpoot
:
Stain-Robust Mitotic Figure Detection for the Mitosis Domain Generalization Challenge. 48-52 - Jakob Dexl
, Michaela Benz
, Volker Bruns
, Petr Kuritcyn
, Thomas Wittenberg
:
MitoDet: Simple and Robust Mitosis Detection. 53-57 - Satoshi Kondo
:
Multi-source Domain Adaptation Using Gradient Reversal Layer for Mitotic Cell Detection. 58-61 - Maxime W. Lafarge
, Viktor H. Koelzer:
Rotation Invariance and Extensive Data Augmentation: A Strategy for the MItosis DOmain Generalization (MIDOG) Challenge. 62-67 - Jingtang Liang, Cheng Wang, Yujie Cheng, Zheng Wang, Fang Wang, Liyu Huang, Zhibin Yu, Yubo Wang:
Detecting Mitosis Against Domain Shift Using a Fused Detector and Deep Ensemble Classification Model for MIDOG Challenge. 68-72 - Xi Long, Ying Cheng, Xiao Mu, Lian Liu, Jingxin Liu
:
Domain Adaptive Cascade R-CNN for MItosis DOmain Generalization (MIDOG) Challenge. 73-76 - Sahar Almahfouz Nasser
, Nikhil Cherian Kurian
, Amit Sethi
:
Domain Generalisation for Mitosis Detection Exploting Preprocessing Homogenizers. 77-80 - Salar Razavi
, Fariba Dambandkhameneh, Dimitri Androutsos, Susan Done, April Khademi
:
Cascade R-CNN for MIDOG Challenge. 81-85 - Sen Yang, Feng Luo, Jun Zhang, Xiyue Wang
:
Sk-Unet Model with Fourier Domain for Mitosis Detection. 86-90
MOOD
- Jihoon Cho
, Inha Kang
, Jinah Park
:
Self-supervised 3D Out-of-Distribution Detection via Pseudoanomaly Generation. 95-103 - Seongjin Park
, Adam Balint
, Hyejin Hwang
:
Self-supervised Medical Out-of-Distribution Using U-Net Vision Transformers. 104-110 - Lars Doorenbos
, Raphael Sznitman
, Pablo Márquez-Neila:
SS3D: Unsupervised Out-of-Distribution Detection and Localization for Medical Volumes. 111-118 - Jeremy Tan
, Turkay Kart, Benjamin Hou, James Batten, Bernhard Kainz
:
MetaDetector: Detecting Outliers by Learning to Learn from Self-supervision. 119-126 - Felix Meissen, Georgios Kaissis, Daniel Rueckert:
AutoSeg - Steering the Inductive Biases for Automatic Pathology Segmentation. 127-135
L2R
- Luyi Han
, Haoran Dou, Yunzhi Huang
, Pew-Thian Yap:
Deformable Registration of Brain MR Images via a Hybrid Loss. 141-146 - Alessa Hering
, Annkristin Lange
, Stefan Heldmann
, Stephanie Häger
, Sven Kuckertz
:
Fraunhofer MEVIS Image Registration Solutions for the Learn2Reg 2021 Challenge. 147-152 - Gal Lifshitz, Dan Raviv:
Unsupervised Volumetric Displacement Fields Using Cost Function Unrolling. 153-160 - Tony C. W. Mok, Albert C. S. Chung:
Conditional Deep Laplacian Pyramid Image Registration Network in Learn2Reg Challenge. 161-167 - Wei Shao
, Sulaiman Vesal
, David S. Lim, Cynthia Xinran Li, Negar Golestani, Ahmed Alsinan, Richard E. Fan
, Geoffrey A. Sonn
, Mirabela Rusu
:
The Learn2Reg 2021 MICCAI Grand Challenge (PIMed Team). 168-173 - Hanna Siebert
, Lasse Hansen
, Mattias P. Heinrich
:
Fast 3D Registration with Accurate Optimisation and Little Learning for Learn2Reg 2021. 174-179 - Sheng Wang, Jinxin Lv
, Hongkuan Shi, Yilang Wang, Yuanhuai Liang, Zihui Ouyang, Zhiwei Wang, Qiang Li:
Progressive and Coarse-to-Fine Network for Medical Image Registration Across Phases, Modalities and Patients. 180-185 - Marek Wodzinski
:
Semi-supervised Multilevel Symmetric Image Registration Method for Magnetic Resonance Whole Brain Images. 186-191

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.