


default search action
DARE@PKDD/ECML 2017: Skopje, Macedonia
- Wei Lee Woon, Zeyar Aung, Oliver Kramer, Stuart E. Madnick:

Data Analytics for Renewable Energy Integration: Informing the Generation and Distribution of Renewable Energy - 5th ECML PKDD Workshop, DARE 2017, Skopje, Macedonia, September 22, 2017, Revised Selected Papers. Lecture Notes in Computer Science 10691, Springer 2017, ISBN 978-3-319-71642-8 - Diana Manjarres

, Ricardo Alonso, Sergio Gil-Lopez, Itziar Landa-Torres:
Solar Energy Forecasting and Optimization System for Efficient Renewable Energy Integration. 1-12 - Nikolaos Nikolaou

, Efstratios Batzelis
, Gavin Brown:
Gradient Boosting Models for Photovoltaic Power Estimation Under Partial Shading Conditions. 13-25 - Jaroslav Loebl, Helmut Posch, Viera Rozinajová

:
Multi-objective Optimization for Power Load Recommendation Considering User's Comfort. 26-32 - Dina Fawzy, Sherin M. Moussa

, Nagwa L. Badr:
An Approach for Erosion and Power Loss Prediction of Wind Turbines Using Big Data Analytics. 33-46 - Adhra Ali, Hussain Kazmi:

Minimizing Grid Interaction of Solar Generation and DHW Loads in nZEBs Using Model-Free Reinforcement Learning. 47-58 - Maël Guillemé, Laurence Rozé, Véronique Masson, Cérès Carton, René Quiniou, Alexandre Termier:

Improving Time-Series Rule Matching Performance for Detecting Energy Consumption Patterns. 59-71 - Mehmet Baris Özkan, Umut Guvengir, Dilek Küçük

, Ali Unver Secen, Serkan Buhan, Turan Demirci, Abdullah Bestil, Ceyda Er Koksoy, Pinar Karagoz
:
Probabilistic Wind Power Forecasting by Using Quantile Regression Analysis. 72-82 - Janosch Henze

, Tanja Kneiske, Martin Braun
, Bernhard Sick
:
Identifying Representative Load Time Series for Load Flow Calculations. 83-93 - Astrid Dahl, Edwin V. Bonilla:

Scalable Gaussian Process Models for Solar Power Forecasting. 94-106 - Khawla Al Dhaheri, Wei Lee Woon

, Zeyar Aung
:
Wind Speed Forecasting Using Statistical and Machine Learning Methods: A Case Study in the UAE. 107-120 - Alejandro Catalina, José R. Dorronsoro:

NWP Ensembles for Wind Energy Uncertainty Estimates. 121-132

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














