


default search action
10th SciPy 2011, Austin, Texas
- Stéfan van der Walt, Jarrod Millman:

Proceedings of the 10th Python in Science Conference 2011 (SciPy 2011), Austin, Texas, July 11 - 16, 2011. scipy.org 2011 - Minesh B. Amin:

A Technical Anatomy of SPM.Python, a Scalable, Parallel Version of Python. 1-9 - Brian Refsdal, Stephen Doe, Dan Nguyen, Aneta Siemiginowska:

Fitting and Estimating Parameter Confidence Limits with Sherpa. 10-16 - Marcel Caraciolo, Bruno Melo, Ricardo Caspirro:

Crab: A Recommendation Engine Framework for Python. 17-23 - Andrew Cron, Wes McKinney:

gpustats: GPU Library for Statistical Computing in Python. 24-28 - Jeff Daily, Robert R. Lewis:

Using the Global Arrays Toolkit to Reimplement NumPy for Distributed Computation. 29-35 - Scott Determan:

Vision Spreadsheet: An Environment for Computer Vision. 36-39 - Mark Dewing

:
Constructing scientific programs using SymPy. 40-43 - Dharhas Pothina, Andrew Wilson:

Using Python, Partnerships, Standards and Web Services to provide Water Data for Texans. 44-47 - Jonathan Jacky:

PyModel: Model-based testing in Python. 48-52 - Matthew Terry, Joseph Koning:

Automation of Inertial Fusion Target Design with Python. 53-57 - Minwoo Lee, Charles W. Anderson, Mark DeMaria:

Hurricane Prediction with Python. 58-62 - Martin J. Ling, Alexander D. Young:

IMUSim - Simulating inertial and magnetic sensor systems in Python. 63-69 - Kyle T. Mandli, Amal Alghamdi, Aron J. Ahmadia, David I. Ketcheson, William Scullin:

Using Python to Construct a Scalable Parallel Nonlinear Wave Solver. 70-75 - Michael M. McKerns, Leif Strand, Tim Sullivan, Alta Fang, Michael A. G. Aivazis:

Building a Framework for Predictive Science. 76-86 - Nick Bray:

PyStream: Compiling Python onto the GPU. 87-90 - Shoaib Kamil, Derrick Coetzee, Armando Fox:

Bringing Parallel Performance to Python with Domain-Specific Selective Embedded Just-in-Time Specialization. 91-97 - Stephen M. McQuay, Steven E. Gorrell:

N-th-order Accurate, Distributed Interpolation Library. 98-103 - Douglas A. Starnes:

Google App Engine Python. 104-106 - Wes McKinney, Josef Perktold, Skipper Seabold:

Time Series Analysis in Python with statsmodels. 107-113 - Tyler McEwen, Dharhas Pothina, Solomon Negusse:

Improving efficiency and repeatability of lake volume estimates using Python. 114-

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














