


default search action
Causality: Objectives and Assessment - NIPS 2008 Workshop
- Isabelle Guyon, Dominik Janzing, Bernhard Schölkopf:

Causality: Objectives and Assessment (NIPS 2008 Workshop), Whistler, Canada, December 12, 2008. JMLR Proceedings 6, JMLR.org 2010
Preface
- Isabelle Guyon, Dominik Janzing, Bernhard Schölkopf:

Causality: Objectives and Assessment. 1-42
Fundamentals and Algorithms
- Judea Pearl:

Causal Inference. 39-58 - A. Philip Dawid:

Beware of the DAG! 59-86 - Frederick Eberhardt:

Causal Discovery as a Game. 87-96 - Stefan Haufe, Klaus-Robert Müller, Guido Nolte, Nicole Krämer:

Sparse Causal Discovery in Multivariate Time Series. 97-106 - Jan Lemeire, Kris Steenhaut:

Inference of Graphical Causal Models: Representing the Meaningful Information of Probability Distributions. 107-120 - Subramani Mani, Constantin F. Aliferis, Alexander R. Statnikov:

Bayesian Algorithms for Causal Data Mining. 121-136 - Robert E. Tillman, Peter Spirtes:

When causality matters for prediction. 137-146
Challenge contributions
Cause Effect Pairs task (Pairs of variables with known cause-effect relationships)
- Joris M. Mooij, Dominik Janzing:

Distinguishing between cause and effect. 147-156 - Kun Zhang, Aapo Hyvärinen:

Nonlinear acyclic causal models. 157-164
CYTO task (Protein signaling networks in human T-cells)
- Sleiman Itani, Mesrob I. Ohannessian, Karen Sachs, Garry P. Nolan, Munther A. Dahleh:

Recovering Cyclic Causal Structure. 165-176 - David Duvenaud, Daniel Eaton, Kevin P. Murphy, Mark Schmidt:

Causal learning without DAGs. 177-190
LOCANET tasks (Four tasks in genomics, socio-economics, and chemo-informatics)
- You Zhou, Changzhang Wang, Jianxin Yin, Zhi Geng:

Discover Local Causal Network around a Target to a Given Depth. 191-202 - Ernest Mwebaze, John A. Quinn:

Fast Committee-Based Structure Learning. 203-214
SIGNET task (Plant signaling network)
- Jerry Jenkins:

SIGNET: Boolean Rile Deetermination for Abscisic Acid Signaling. 215-224 - Mehreen Saeed:

The Use of Bernoulli Mixture Models for Identifying Corners of a Hypercube and Extracting Boolean Rules From Data. 225-236 - Cheng Zheng, Zhi Geng:

Reverse Engineering of Asynchronous Boolean Networks. 237-248
TIED task (Artificial)
- Alexander R. Statnikov, Constantin F. Aliferis:

TIED: An Artificially Simulated Dataset with Multiple Markov Boundaries. 249-256
MIDS task (Artificial dymanic system)
- Mark Voortman, Denver Dash, Marek J. Druzdzel:

Learning Causal Models That Make Correct Manipulation Predictions. 257-266
NOISE task (Neurophysiology)
- Guido Nolte, Andreas Ziehe, Nicole Krämer, Florin Popescu, Klaus-Robert Müller:

Comparison of Granger Causality and Phase Slope Index. 267-276
SECOM task (Manufacturing)
- Michael McCann, Yuhua Li, Liam P. Maguire, Adrian Johnston:

Causality Challenge: Benchmarking relevant signal components for effective monitoring and process control. 277-288

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














