


default search action
Machine Learning, Volume 46, 2002
Volume 46, Number 1-3, January-February-March 2002
- Nello Cristianini, Colin Campbell, Chris Burges:

Editorial: Kernel Methods: Current Research and Future Directions. 5-9 - Christopher K. I. Williams:

On a Connection between Kernel PCA and Metric Multidimensional Scaling. 11-19 - Peter Sollich

:
Bayesian Methods for Support Vector Machines: Evidence and Predictive Class Probabilities. 21-52 - Sebastian Risau-Gusman, Mirta B. Gordon:

Hierarchical Learning in Polynomial Support Vector Machines. 53-70 - Junbin Gao

, Steve R. Gunn, Chris J. Harris
, Martin Brown:
A Probabilistic Framework for SVM Regression and Error Bar Estimation. 71-89 - Tong Zhang:

On the Dual Formulation of Regularized Linear Systems with Convex Risks. 91-129 - Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, Sayan Mukherjee

:
Choosing Multiple Parameters for Support Vector Machines. 131-159 - Dennis DeCoste, Bernhard Schölkopf:

Training Invariant Support Vector Machines. 161-190 - Yi Lin, Yoonkyung Lee

, Grace Wahba:
Support Vector Machines for Classification in Nonstandard Situations. 191-202 - Theodore B. Trafalis

, Alexander M. Malyscheff:
An Analytic Center Machine. 203-223 - Ayhan Demiriz, Kristin P. Bennett, John Shawe-Taylor

:
Linear Programming Boosting via Column Generation. 225-254 - Olvi L. Mangasarian, David R. Musicant:

Large Scale Kernel Regression via Linear Programming. 255-269 - Gary William Flake, Steve Lawrence:

Efficient SVM Regression Training with SMO. 271-290 - Chih-Wei Hsu, Chih-Jen Lin

:
A Simple Decomposition Method for Support Vector Machines. 291-314 - Pavel Laskov:

Feasible Direction Decomposition Algorithms for Training Support Vector Machines. 315-349 - S. Sathiya Keerthi, Elmer G. Gilbert:

Convergence of a Generalized SMO Algorithm for SVM Classifier Design. 351-360 - Yi Li, Philip M. Long:

The Relaxed Online Maximum Margin Algorithm. 361-387 - Isabelle Guyon, Jason Weston, Stephen Barnhill, Vladimir Vapnik:

Gene Selection for Cancer Classification using Support Vector Machines. 389-422 - Edda Leopold, Jörg Kindermann:

Text Categorization with Support Vector Machines. How to Represent Texts in Input Space? 423-444

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














