


default search action
Mathematical Structures in Computer Science, Volume 31
Volume 31, Number 1, January 2021
- Benedikt Ahrens
, Simon Huber, Anders Mörtberg:
Preface to the MSCS Issue 31.1 (2021) Homotopy Type Theory and Univalent Foundations. 1-2 - Valery Isaev
:
Indexed type theories. 3-63 - Auke Bart Booij
:
Extensional constructive real analysis via locators. 64-88 - Martín Hötzel Escardó
:
Injective types in univalent mathematics. 89-111 - Cesare Gallozzi
:
Homotopy type-theoretic interpretations of constructive set theories. 112-143
Volume 31, Number 2, February 2021
- Dieter Spreen
:
Computing with continuous objects: a uniform co-inductive approach. 144-192 - Martin Raussen
:
Strictifying and taming directed paths in Higher Dimensional Automata. 193-213 - Jetze Zoethout
:
On (co)products of partial combinatory algebras, with an application to pushouts of realizability toposes. 214-233 - Jean Goubault-Larrecq
:
Products and projective limits of continuous valuations on T0 spaces. 234-254
Volume 31, Number 3, March 2021
- Sandra Alves
, Renata Wassermann
:
Preface to special issue: LSFA 2017 and 2018. 255-256
- Umberto Rivieccio
, Ramon Jansana:
Quasi-Nelson algebras and fragments. 257-285 - Mauricio Ayala-Rincón
, Washington de Carvalho Segundo, Maribel Fernández, Gabriel Ferreira Silva, Daniele Nantes-Sobrinho
:
Formalising nominal C-unification generalised with protected variables. 286-311 - Amy P. Felty, Carlos Olarte
, Bruno Xavier:
A focused linear logical framework and its application to metatheory of object logics. 312-340 - Ernesto Copello, Nora Szasz
, Álvaro Tasistro
:
Formalization of metatheory of the Lambda Calculus in constructive type theory using the Barendregt variable convention. 341-360
Volume 31, Number 4, April 2021
- Benedikt Ahrens
, Simon Huber, Anders Mörtberg
:
Preface to the MSCS Issue 31.1 (2021) Homotopy Type Theory and Univalent Foundations - Part II. 361-362
- Felix Cherubini
, Egbert Rijke:
Modal descent. 363-391 - Simon Boulier, Nicolas Tabareau
:
Model structure on the universe of all types in interval type theory. 392-423 - Carlo Angiuli
, Guillaume Brunerie, Thierry Coquand
, Robert Harper, Kuen-Bang Hou (Favonia)
, Daniel R. Licata
:
Syntax and models of Cartesian cubical type theory. 424-468
Volume 31, Number 5, May 2021
- Martin E. Bidlingmaier
:
An interpretation of dependent type theory in a model category of locally cartesian closed categories. 469-494 - Sergey Slavnov
:
Linear logic in normed cones: probabilistic coherence spaces and beyond. 495-534 - Jirí Rosický
:
Metric monads. 535-552 - Bart Jacobs
, Aleks Kissinger, Fabio Zanasi
:
Causal inference via string diagram surgery: A diagrammatic approach to interventions and counterfactuals. 553-574 - Uli Fahrenberg
, Christian Johansen
, Georg Struth
, Krzysztof Ziemianski
:
Languages of higher-dimensional automata. 575-613
Volume 31, Number 6, June 2021
- Jean Goubault-Larrecq
, Xiaodong Jia
:
Separating minimal valuations, point-continuous valuations, and continuous valuations. 614-632 - Ugo Dal Lago, Naohiko Hoshino
:
The geometry of Bayesian programming. 633-681 - Christopher Jenkins
, Aaron Stump:
Monotone recursive types and recursive data representations in Cedille. 682-745
Volume 31, Number 7, August 2021
- Masahito Hasegawa
, Stephen Lack
, Guy McCusker:
A special issue on categorical algebras and computation in celebration of John Power's 60th birthday, part I. 746-747
- Kevin Coulembier, Ross Street
, Michel van den Bergh
:
Freely adjoining monoidal duals. 748-768 - Francesco Dagnino, Giuseppe Rosolini
:
Doctrines, modalities and comonads. 769-798 - Jirí Adámek, Chase Ford
, Stefan Milius
, Lutz Schröder
:
Finitary monads on the category of posets. 799-821 - Marcelo Fiore
, Philip Saville
:
Coherence for bicategorical cartesian closed structure. 822-849
Volume 31, Number 8, September 2021
- Tobias Fritz
, Paolo Perrone
, Sharwin Rezagholi
:
Probability, valuations, hyperspace: Three monads on top and the support as a morphism. 850-897 - Peter Szabó, Jörg H. Siekmann
:
E-Unification based on Generalized Embedding. 898-917 - James Cranch, Simon Doherty, Georg Struth
:
Convolution and concurrency. 918-949
Volume 31, Number 9, October 2021
- Jan Hoffmann, Donald Sannella, Ulrich Schöpp
:
Preface for the special issue in homage to Martin Hofmann Part 1. 950-952
- Thorsten Altenkirch
:
Martin Hofmann's contributions to type theory: Groupoids and univalence. 953-957 - Jacopo Emmenegger
, Fabio Pasquali, Giuseppe Rosolini
:
Elementary fibrations of enriched groupoids. 958-978 - Thierry Coquand
, Fabian Ruch
, Christian Sattler
:
Constructive sheaf models of type theory. 979-1002 - Thomas Streicher
:
The genesis of the groupoid model. 1003-1005 - Marc Bezem, Thierry Coquand
, Peter Dybjer
, Martín Escardó
:
On generalized algebraic theories and categories with families. 1006-1023 - Jonas Frey
, Thomas Streicher
:
Triposes as a generalization of localic geometric morphisms. 1024-1033 - Murdoch James Gabbay
:
Algebras of UTxO blockchains. 1034-1089 - Helmut Seidl
, Ralf Vogler:
Three improvements to the top-down solver. 1090-1134 - Markus Latte
:
Branching-time logics and fairness, revisited. 1135-1144
Volume 31, Number 10, November 2021
- Dan Licata
, Peter LeFanu Lumsdaine:
Special issue on homotopy type theory 2019. 1145-1146
- Anders Mörtberg
:
Cubical methods in homotopy type theory and univalent foundations. 1147-1184 - Andrew W. Swan
, Taichi Uemura
:
On Church's thesis in cubical assemblies. 1185-1204 - Bruno Bentzen
:
Naive cubical type theory. 1205-1231 - Benedikt Ahrens
, Dan Frumin
, Marco Maggesi
, Niccolò Veltri
, Niels van der Weide
:
Bicategories in univalent foundations. 1232-1269 - Tom de Jong
:
The Scott model of PCF in univalent type theory. 1270-1300 - Martin E. Bidlingmaier
, Florian Faissole
, Bas Spitters
:
Synthetic topology in Homotopy Type Theory for probabilistic programming. 1301-1329

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.