Stop the war!
Остановите войну!
for scientists:
default search action
Yoshinobu Kawahara
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j27]Keisuke Fujii, Naoya Takeishi, Yoshinobu Kawahara, Kazuya Takeda:
Decentralized policy learning with partial observation and mechanical constraints for multiperson modeling. Neural Networks 171: 40-52 (2024) - [j26]Motoya Ohnishi, Isao Ishikawa, Kendall Lowrey, Masahiro Ikeda, Sham M. Kakade, Yoshinobu Kawahara:
Koopman Spectrum Nonlinear Regulators and Efficient Online Learning. Trans. Mach. Learn. Res. 2024 (2024) - [c46]Keisuke Fujii, Kazushi Tsutsui, Atom Scott, Hiroshi Nakahara, Naoya Takeishi, Yoshinobu Kawahara:
Adaptive Action Supervision in Reinforcement Learning from Real-World Multi-Agent Demonstrations. ICAART (2) 2024: 27-39 - [c45]Matthias Weissenbacher, Rishabh Agarwal, Yoshinobu Kawahara:
SiT: Symmetry-invariant Transformers for Generalisation in Reinforcement Learning. ICML 2024 - [i40]Ryuichiro Hataya, Yoshinobu Kawahara:
Glocal Hypergradient Estimation with Koopman Operator. CoRR abs/2402.02741 (2024) - [i39]Isao Ishikawa, Yuka Hashimoto, Masahiro Ikeda, Yoshinobu Kawahara:
Koopman operators with intrinsic observables in rigged reproducing kernel Hilbert spaces. CoRR abs/2403.02524 (2024) - [i38]Bum Jun Kim, Yoshinobu Kawahara, Sang Woo Kim:
The Disappearance of Timestep Embedding in Modern Time-Dependent Neural Networks. CoRR abs/2405.14126 (2024) - [i37]Matthias Weissenbacher, Rishabh Agarwal, Yoshinobu Kawahara:
SiT: Symmetry-Invariant Transformers for Generalisation in Reinforcement Learning. CoRR abs/2406.15025 (2024) - [i36]Marek Wadinger, Michal Kvasnica, Yoshinobu Kawahara:
Change-Point Detection in Industrial Data Streams based on Online Dynamic Mode Decomposition with Control. CoRR abs/2407.05976 (2024) - 2023
- [j25]Takuya Konishi, Yoshinobu Kawahara:
Stable invariant models via Koopman spectra. Neural Networks 165: 393-405 (2023) - [j24]Dean A. Bodenham, Yoshinobu Kawahara:
euMMD: efficiently computing the MMD two-sample test statistic for univariate data. Stat. Comput. 33(5): 110 (2023) - [j23]Naoya Takeishi, Yoshinobu Kawahara:
A Characteristic Function for Shapley-Value-Based Attribution of Anomaly Scores. Trans. Mach. Learn. Res. 2023 (2023) - [c44]Kazu Ghalamkari, Mahito Sugiyama, Yoshinobu Kawahara:
Many-body Approximation for Non-negative Tensors. NeurIPS 2023 - [i35]Keisuke Fujii, Kazushi Tsutsui, Atom Scott, Hiroshi Nakahara, Naoya Takeishi, Yoshinobu Kawahara:
Adaptive action supervision in reinforcement learning from real-world multi-agent demonstrations. CoRR abs/2305.13030 (2023) - [i34]Ryohei Fukuma, Kei Majima, Yoshinobu Kawahara, Okito Yamashita, Yoshiyuki Shiraishi, Haruhiko Kishima, Takufumi Yanagisawa:
Fast, accurate, and interpretable decoding of electrocorticographic signals using dynamic mode decomposition. CoRR abs/2311.04225 (2023) - 2022
- [j22]Israr Ul Haq, Tomoharu Iwata, Yoshinobu Kawahara:
Dynamic mode decomposition via convolutional autoencoders for dynamics modeling in videos. Comput. Vis. Image Underst. 216: 103355 (2022) - [j21]Shigeyuki Ikeda, Koki Kawano, Soichi Watanabe, Okito Yamashita, Yoshinobu Kawahara:
Predicting behavior through dynamic modes in resting-state fMRI data. NeuroImage 247: 118801 (2022) - [j20]Naoya Takeishi, Keisuke Fujii, Koh Takeuchi, Yoshinobu Kawahara:
Discriminant Dynamic Mode Decomposition for Labeled Spatiotemporal Data Collections. SIAM J. Appl. Dyn. Syst. 21(2): 1030-1058 (2022) - [c43]Keisuke Fujii, Koh Takeuchi, Atsushi Kuribayashi, Naoya Takeishi, Yoshinobu Kawahara, Kazuya Takeda:
Estimating counterfactual treatment outcomes over time in multi-vehicle simulation. SIGSPATIAL/GIS 2022: 7:1-7:4 - [c42]Matthias Weissenbacher, Samarth Sinha, Animesh Garg, Yoshinobu Kawahara:
Koopman Q-learning: Offline Reinforcement Learning via Symmetries of Dynamics. ICML 2022: 23645-23667 - [i33]Keisuke Fujii, Koh Takeuchi, Atsushi Kuribayashi, Naoya Takeishi, Yoshinobu Kawahara, Kazuya Takeda:
Estimating counterfactual treatment outcomes over time in complex multi-agent scenarios. CoRR abs/2206.01900 (2022) - [i32]Takuya Konishi, Yoshinobu Kawahara:
Stable Invariant Models via Koopman Spectra. CoRR abs/2207.07475 (2022) - [i31]Tomoharu Iwata, Yoshinobu Kawahara:
Data-driven End-to-end Learning of Pole Placement Control for Nonlinear Dynamics via Koopman Invariant Subspaces. CoRR abs/2208.08883 (2022) - [i30]Tomoharu Iwata, Yoshinobu Kawahara:
Modeling Nonlinear Dynamics in Continuous Time with Inductive Biases on Decay Rates and/or Frequencies. CoRR abs/2212.13033 (2022) - 2021
- [j19]Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Fuyuta Komura, Takeshi Katsura, Yoshinobu Kawahara:
Reproducing kernel Hilbert C*-module and kernel mean embeddings. J. Mach. Learn. Res. 22: 267:1-267:56 (2021) - [c41]Naoya Takeishi, Yoshinobu Kawahara:
Learning Dynamics Models with Stable Invariant Sets. AAAI 2021: 9782-9790 - [c40]Tomoharu Iwata, Yoshinobu Kawahara:
Controlling Nonlinear Dynamical Systems with Linear Quadratic Regulator-based Policy Networks in Koopman space. CDC 2021: 5086-5091 - [c39]Keisuke Fujii, Naoya Takeishi, Kazushi Tsutsui, Emyo Fujioka, Nozomi Nishiumi, Ryoya Tanaka, Mika Fukushiro, Kaoru Ide, Hiroyoshi Kohno, Ken Yoda, Susumu Takahashi, Shizuko Hiryu, Yoshinobu Kawahara:
Learning interaction rules from multi-animal trajectories via augmented behavioral models. NeurIPS 2021: 11108-11122 - [i29]Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Fuyuta Komura, Takeshi Katsura, Yoshinobu Kawahara:
Reproducing kernel Hilbert C*-module and kernel mean embeddings. CoRR abs/2101.11410 (2021) - [i28]Tomoharu Iwata, Yoshinobu Kawahara:
Meta-Learning for Koopman Spectral Analysis with Short Time-series. CoRR abs/2102.04683 (2021) - [i27]Naoya Takeishi, Keisuke Fujii, Koh Takeuchi, Yoshinobu Kawahara:
Discriminant Dynamic Mode Decomposition for Labeled Spatio-Temporal Data Collections. CoRR abs/2102.09973 (2021) - [i26]Matthias Weissenbacher, Yoshinobu Kawahara:
A Quadratic Actor Network for Model-Free Reinforcement Learning. CoRR abs/2103.06617 (2021) - [i25]Motoya Ohnishi, Isao Ishikawa, Kendall Lowrey, Masahiro Ikeda, Sham M. Kakade, Yoshinobu Kawahara:
Koopman Spectrum Nonlinear Regulator and Provably Efficient Online Learning. CoRR abs/2106.15775 (2021) - [i24]Keisuke Fujii, Naoya Takeishi, Kazushi Tsutsui, Emyo Fujioka, Nozomi Nishiumi, Ryoya Tanaka, Mika Fukushiro, Kaoru Ide, Hiroyoshi Kohno, Ken Yoda, Susumu Takahashi, Shizuko Hiryu, Yoshinobu Kawahara:
Learning interaction rules from multi-animal trajectories via augmented behavioral models. CoRR abs/2107.05326 (2021) - [i23]Matthias Weissenbacher, Samarth Sinha, Animesh Garg, Yoshinobu Kawahara:
Koopman Q-learning: Offline Reinforcement Learning via Symmetries of Dynamics. CoRR abs/2111.01365 (2021) - 2020
- [j18]Israr Ul Haq, Keisuke Fujii, Yoshinobu Kawahara:
Dynamic mode decomposition via dictionary learning for foreground modeling in videos. Comput. Vis. Image Underst. 199: 103022 (2020) - [j17]Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Yoichi Matsuo, Yoshinobu Kawahara:
Krylov Subspace Method for Nonlinear Dynamical Systems with Random Noise. J. Mach. Learn. Res. 21: 172:1-172:29 (2020) - [j16]Tadashi Hidaka, Keiko Imamura, Takeshi Hioki, Terufumi Takagi, Yoshikazu Giga, Mi-Ho Giga, Yoshiteru Nishimura, Yoshinobu Kawahara, Satoru Hayashi, Takeshi Niki, Makoto Fushimi, Haruhisa Inoue:
Prediction of Compound Bioactivities Using Heat-Diffusion Equation. Patterns 1(9): 100140 (2020) - [c38]Naoya Takeishi, Yoshinobu Kawahara:
Learning Multiple Nonlinear Dynamical Systems with Side Information. CDC 2020: 3206-3211 - [c37]Naoya Takeishi, Yoshinobu Kawahara:
Knowledge-Based Regularization in Generative Modeling. IJCAI 2020: 2390-2396 - [c36]Israr Ul Haq, Keisuke Fujii, Yoshinobu Kawahara:
Dynamic Mode Decomposition via Dictionary Learning for Foreground Modeling in Videos. VISIGRAPP (5: VISAPP) 2020: 476-483 - [i22]Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Fuyuta Komura, Takeshi Katsura, Yoshinobu Kawahara:
Analysis via Orthonormal Systems in Reproducing Kernel Hilbert C*-Modules and Applications. CoRR abs/2003.00738 (2020) - [i21]Naoya Takeishi, Yoshinobu Kawahara:
On Anomaly Interpretation via Shapley Values. CoRR abs/2004.04464 (2020) - [i20]Naoya Takeishi, Yoshinobu Kawahara:
Learning Dynamics Models with Stable Invariant Sets. CoRR abs/2006.08935 (2020) - [i19]Keisuke Fujii, Naoya Takeishi, Yoshinobu Kawahara, Kazuya Takeda:
Policy learning with partial observation and mechanical constraints for multi-person modeling. CoRR abs/2007.03155 (2020) - [i18]Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Fuyuta Komura, Yoshinobu Kawahara:
Kernel Mean Embeddings of Von Neumann-Algebra-Valued Measures. CoRR abs/2007.14698 (2020) - [i17]Tomoharu Iwata, Yoshinobu Kawahara:
Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear Dynamics. CoRR abs/2012.06191 (2020)
2010 – 2019
- 2019
- [j15]Keisuke Fujii, Yoshinobu Kawahara:
Dynamic mode decomposition in vector-valued reproducing kernel Hilbert spaces for extracting dynamical structure among observables. Neural Networks 117: 94-103 (2019) - [j14]Keisuke Fujii, Yoshinobu Kawahara:
Supervised dynamic mode decomposition via multitask learning. Pattern Recognit. Lett. 122: 7-13 (2019) - [c35]Shogo Hayashi, Yoshinobu Kawahara, Hisashi Kashima:
Active Change-Point Detection. ACML 2019: 1017-1032 - [c34]Takehito Bito, Masashi Hiraoka, Yoshinobu Kawahara:
Learning with Coherence Patterns in Multivariate Time-series Data via Dynamic Mode Decomposition. IJCNN 2019: 1-8 - [c33]Naoya Uematsu, Shunji Umetani, Yoshinobu Kawahara:
An Efficient Branch-and-Cut Algorithm for Approximately Submodular Function Maximization. SMC 2019: 3160-3167 - [c32]Koh Takeuchi, Yuichi Yoshida, Yoshinobu Kawahara:
Variational Inference of Penalized Regression with Submodular Functions. UAI 2019: 1202-1211 - [i16]Naoya Takeishi, Yoshinobu Kawahara:
Regularizing Generative Models Using Knowledge of Feature Dependence. CoRR abs/1902.02068 (2019) - [i15]Naoya Uematsu, Shunji Umetani, Yoshinobu Kawahara:
An efficient branch-and-cut algorithm for approximately submodular function maximization. CoRR abs/1904.12682 (2019) - [i14]Keisuke Fujii, Naoya Takeishi, Motokazu Hojo, Yuki Inaba, Yoshinobu Kawahara:
Physically-interpretable classification of network dynamics for complex collective motions. CoRR abs/1905.04859 (2019) - [i13]Isao Ishikawa, Akinori Tanaka, Masahiro Ikeda, Yoshinobu Kawahara:
Metric on random dynamical systems with vector-valued reproducing kernel Hilbert spaces. CoRR abs/1906.06957 (2019) - [i12]Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Yoichi Matsuo, Yoshinobu Kawahara:
Krylov Subspace Method for Nonlinear Dynamical Systems with Random Noise. CoRR abs/1909.03634 (2019) - 2018
- [j13]Keisuke Fujii, Takeshi Kawasaki, Yuki Inaba, Yoshinobu Kawahara:
Prediction and classification in equation-free collective motion dynamics. PLoS Comput. Biol. 14(11) (2018) - [c31]Naoya Takeishi, Takehisa Yairi, Yoshinobu Kawahara:
Factorially Switching Dynamic Mode Decomposition for Koopman Analysis of Time-Variant Systems. CDC 2018: 6402-6408 - [c30]Isao Ishikawa, Keisuke Fujii, Masahiro Ikeda, Yuka Hashimoto, Yoshinobu Kawahara:
Metric on Nonlinear Dynamical Systems with Perron-Frobenius Operators. NeurIPS 2018: 2861-2871 - [i11]Isao Ishikawa, Keisuke Fujii, Masahiro Ikeda, Yuka Hashimoto, Yoshinobu Kawahara:
Metric on Nonlinear Dynamical Systems with Koopman Operators. CoRR abs/1805.12324 (2018) - [i10]Keisuke Fujii, Yoshinobu Kawahara:
Dynamic mode decomposition in vector-valued reproducing kernel Hilbert spaces for extracting dynamical structure among observables. CoRR abs/1808.10551 (2018) - [i9]Naoya Uematsu, Shunji Umetani, Yoshinobu Kawahara:
An efficient branch-and-bound algorithm for submodular function maximization. CoRR abs/1811.04177 (2018) - 2017
- [j12]Hongxing Wang, Yoshinobu Kawahara, Chaoqun Weng, Junsong Yuan:
Representative Selection with Structured Sparsity. Pattern Recognit. 63: 268-278 (2017) - [c29]Naoya Takeishi, Yoshinobu Kawahara, Takehisa Yairi:
Sparse nonnegative dynamic mode decomposition. ICIP 2017: 2682-2686 - [c28]Naoya Takeishi, Yoshinobu Kawahara, Yasuo Tabei, Takehisa Yairi:
Bayesian Dynamic Mode Decomposition. IJCAI 2017: 2814-2821 - [c27]Naoya Takeishi, Yoshinobu Kawahara, Takehisa Yairi:
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition. NIPS 2017: 1130-1140 - [c26]Keisuke Fujii, Yuki Inaba, Yoshinobu Kawahara:
Koopman Spectral Kernels for Comparing Complex Dynamics: Application to Multiagent Sport Plays. ECML/PKDD (3) 2017: 127-139 - [c25]Koh Takeuchi, Yoshinobu Kawahara, Tomoharu Iwata:
Structurally Regularized Non-negative Tensor Factorization for Spatio-Temporal Pattern Discoveries. ECML/PKDD (1) 2017: 582-598 - [i8]Naoya Takeishi, Yoshinobu Kawahara, Takehisa Yairi:
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition. CoRR abs/1710.04340 (2017) - 2016
- [j11]Marina Demeshko, Takashi Washio, Yoshinobu Kawahara, Yuriy Pepyolyshev:
A Novel Continuous and Structural VAR Modeling Approach and Its Application to Reactor Noise Analysis. ACM Trans. Intell. Syst. Technol. 7(2): 24:1-24:22 (2016) - [j10]Bo Xin, Yoshinobu Kawahara, Yizhou Wang, Lingjing Hu, Wen Gao:
Efficient Generalized Fused Lasso and Its Applications. ACM Trans. Intell. Syst. Technol. 7(4): 60:1-60:22 (2016) - [c24]Yoshinobu Kawahara:
Dynamic Mode Decomposition with Reproducing Kernels for Koopman Spectral Analysis. NIPS 2016: 911-919 - 2015
- [j9]Yunzhu Zheng, Haruka Suematsu, Takayuki Itoh, Ryohei Fujimaki, Satoshi Morinaga, Yoshinobu Kawahara:
Scatterplot layout for high-dimensional data visualization. J. Vis. 18(1): 111-119 (2015) - [c23]Yoshinobu Kawahara, Rishabh K. Iyer, Jeff A. Bilmes:
On Approximate Non-submodular Minimization via Tree-Structured Supermodularity. AISTATS 2015 - [c22]Shinichi Yamagiwa, Yoshinobu Kawahara, Noriyuki Tabuchi, Yoshinobu Watanabe, Takeshi Naruo:
Skill grouping method: Mining and clustering skill differences from body movement BigData. IEEE BigData 2015: 2525-2534 - [c21]Koh Takeuchi, Yoshinobu Kawahara, Tomoharu Iwata:
Higher Order Fused Regularization for Supervised Learning with Grouped Parameters. ECML/PKDD (1) 2015: 577-593 - [i7]Yoshinobu Kawahara, Yutaro Yamaguchi:
Parametric Maxflows for Structured Sparse Learning with Convex Relaxations of Submodular Functions. CoRR abs/1509.03946 (2015) - 2014
- [c20]Bo Xin, Yoshinobu Kawahara, Yizhou Wang, Wen Gao:
Efficient Generalized Fused Lasso and its Application to the Diagnosis of Alzheimer's Disease. AAAI 2014: 2163-2169 - [c19]Yoshinobu Kawahara, Tetsuji Kuboyama, Hiroshi Sakamoto:
Workshop on Graph-Based Algorithms for Big Data and Its Applications (GABA2014). JSAI-isAI Workshops 2014: 293-295 - [c18]Mahito Sugiyama, Chloé-Agathe Azencott, Dominik G. Grimm, Yoshinobu Kawahara, Karsten M. Borgwardt:
Multi-Task Feature Selection on Multiple Networks via Maximum Flows. SDM 2014: 199-207 - [i6]Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, Yoshinobu Kawahara:
Causal Discovery in a Binary Exclusive-or Skew Acyclic Model: BExSAM. CoRR abs/1401.5636 (2014) - [i5]Shohei Shimizu, Aapo Hyvärinen, Yoshinobu Kawahara:
A direct method for estimating a causal ordering in a linear non-Gaussian acyclic model. CoRR abs/1408.2038 (2014) - 2013
- [j8]Chloé-Agathe Azencott, Dominik G. Grimm, Mahito Sugiyama, Yoshinobu Kawahara, Karsten M. Borgwardt:
Efficient network-guided multi-locus association mapping with graph cuts. Bioinform. 29(13): 171-179 (2013) - [j7]Akiko Takeda, Mahesan Niranjan, Jun-ya Gotoh, Yoshinobu Kawahara:
Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios. Comput. Manag. Sci. 10(1): 21-49 (2013) - [j6]Yasuhiro Sogawa, Tsuyoshi Ueno, Yoshinobu Kawahara, Takashi Washio:
Active learning for noisy oracle via density power divergence. Neural Networks 46: 133-143 (2013) - [c17]Marina Demeshko, Takashi Washio, Yoshinobu Kawahara:
A Novel Structural AR Modeling Approach for a Continuous Time Linear Markov System. ICDM Workshops 2013: 104-113 - [c16]Haruka Suematsu, Yunzhu Zheng, Takayuki Itoh, Ryohei Fujimaki, Satoshi Morinaga, Yoshinobu Kawahara:
Arrangement of Low-Dimensional Parallel Coordinate Plots for High-Dimensional Data Visualization. IV 2013: 59-65 - [c15]Kiyohito Nagano, Yoshinobu Kawahara:
Structured Convex Optimization under Submodular Constraints. UAI 2013 - [i4]Kiyohito Nagano, Yoshinobu Kawahara:
Structured Convex Optimization under Submodular Constraints. CoRR abs/1309.6850 (2013) - 2012
- [j5]Satoshi Hara, Yoshinobu Kawahara, Takashi Washio, Paul von Bünau, Terumasa Tokunaga, Kiyohumi Yumoto:
Separation of stationary and non-stationary sources with a generalized eigenvalue problem. Neural Networks 33: 7-20 (2012) - [j4]Yoshinobu Kawahara, Masashi Sugiyama:
Sequential change-point detection based on direct density-ratio estimation. Stat. Anal. Data Min. 5(2): 114-127 (2012) - [c14]Yasuhiro Sogawa, Tsuyoshi Ueno, Yoshinobu Kawahara, Takashi Washio:
Robust Active Learning for Linear Regression via Density Power Divergence. ICONIP (3) 2012: 594-602 - [c13]Tsuyoshi Ueno, Kohei Hayashi, Takashi Washio, Yoshinobu Kawahara:
Weighted Likelihood Policy Search with Model Selection. NIPS 2012: 2366-2374 - [i3]Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, Yoshinobu Kawahara:
Discovering causal structures in binary exclusive-or skew acyclic models. CoRR abs/1202.3736 (2012) - 2011
- [j3]Yoshinobu Kawahara, Shohei Shimizu, Takashi Washio:
Analyzing relationships among ARMA processes based on non-Gaussianity of external influences. Neurocomputing 74(12-13): 2212-2221 (2011) - [j2]Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvärinen, Yoshinobu Kawahara, Takashi Washio, Patrik O. Hoyer, Kenneth Bollen:
DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model. J. Mach. Learn. Res. 12: 1225-1248 (2011) - [j1]Yoshinobu Kawahara, Kiyohito Nagano, Yoshio Okamoto:
Submodular fractional programming for balanced clustering. Pattern Recognit. Lett. 32(2): 235-243 (2011) - [c12]Kiyohito Nagano, Yoshinobu Kawahara, Kazuyuki Aihara:
Size-constrained Submodular Minimization through Minimum Norm Base. ICML 2011: 977-984 - [c11]Yoshinobu Kawahara, Takashi Washio:
Prismatic Algorithm for Discrete D.C. Programming Problem. NIPS 2011: 2106-2114 - [c10]Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, Yoshinobu Kawahara:
Discovering causal structures in binary exclusive-or skew acyclic models. UAI 2011: 373-382 - [i2]Yoshinobu Kawahara, Takashi Washio:
Prismatic Algorithm for Discrete D.C. Programming Problems. CoRR abs/1108.4217 (2011) - 2010
- [c9]Satoshi Hara, Yoshinobu Kawahara, Takashi Washio, Paul von Bünau:
Stationary Subspace Analysis as a Generalized Eigenvalue Problem. ICONIP (1) 2010: 422-429 - [c8]Masao Joko, Yoshinobu Kawahara, Takehisa Yairi:
Learning Non-linear Dynamical Systems by Alignment of Local Linear Models. ICPR 2010: 1084-1087 - [c7]Yasuhiro Sogawa, Shohei Shimizu, Yoshinobu Kawahara, Takashi Washio:
An experimental comparison of linear non-Gaussian causal discovery methods and their variants. IJCNN 2010: 1-8 - [c6]Kiyohito Nagano, Yoshinobu Kawahara, Satoru Iwata:
Minimum Average Cost Clustering. NIPS 2010: 1759-1767 - [i1]Yoshinobu Kawahara, Kenneth Bollen, Shohei Shimizu, Takashi Washio:
GroupLiNGAM: Linear non-Gaussian acyclic models for sets of variables. CoRR abs/1006.5041 (2010)
2000 – 2009
- 2009
- [c5]Yoshinobu Kawahara, Kiyohito Nagano, Koji Tsuda, Jeff A. Bilmes:
Submodularity Cuts and Applications. NIPS 2009: 916-924 - [c4]Yoshinobu Kawahara, Masashi Sugiyama:
Change-Point Detection in Time-Series Data by Direct Density-Ratio Estimation. SDM 2009: 389-400 - [c3]Shohei Shimizu, Aapo Hyvärinen, Yoshinobu Kawahara:
A direct method for estimating a causal ordering in a linear non-Gaussian acyclic model. UAI 2009: 506-513 - 2007
- [c2]Yoshinobu Kawahara, Takehisa Yairi, Kazuo Machida:
Change-Point Detection in Time-Series Data Based on Subspace Identification. ICDM 2007: 559-564 - 2006
- [c1]Yoshinobu Kawahara, Takehisa Yairi, Kazuo Machida:
A Kernel Subspace Method by Stochastic Realization for Learning Nonlinear Dynamical Systems. NIPS 2006: 665-672