default search action
Tal Ben-Nun
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c40]Yves Baumann, Tal Ben-Nun, Maciej Besta, Lukas Gianinazzi, Torsten Hoefler, Piotr Luczynski:
Low-Depth Spatial Tree Algorithms. IPDPS 2024: 180-192 - [c39]Lukas Gianinazzi, Alexandros Nikolaos Ziogas, Langwen Huang, Piotr Luczynski, Saleh Ashkboosh, Florian Scheidl, Armon Carigiet, Chio Ge, Nabil Abubaker, Maciej Besta, Tal Ben-Nun, Torsten Hoefler:
Arrow Matrix Decomposition: A Novel Approach for Communication-Efficient Sparse Matrix Multiplication. PPoPP 2024: 404-416 - [c38]Javid Baydamirli, Tal Ben-Nun, Didem Unat:
Autonomous Execution for Multi-GPU Systems: Compiler Support. SC Workshops 2024: 1129-1140 - [i49]Lukas Gianinazzi, Alexandros Nikolaos Ziogas, Langwen Huang, Piotr Luczynski, Saleh Ashkboos, Florian Scheidl, Armon Carigiet, Chio Ge, Nabil Abubaker, Maciej Besta, Tal Ben-Nun, Torsten Hoefler:
Arrow Matrix Decomposition: A Novel Approach for Communication-Efficient Sparse Matrix Multiplication. CoRR abs/2402.19364 (2024) - [i48]Yves Baumann, Tal Ben-Nun, Maciej Besta, Lukas Gianinazzi, Torsten Hoefler, Piotr Luczynski:
Low-Depth Spatial Tree Algorithms. CoRR abs/2404.12953 (2024) - [i47]Satoki Ishikawa, Tal Ben-Nun, Brian Van Essen, Rio Yokota, Nikoli Dryden:
Lion Cub: Minimizing Communication Overhead in Distributed Lion. CoRR abs/2411.16462 (2024) - 2023
- [j9]Anshu Dubey, Tal Ben-Nun, Bradford L. Chamberlain, Bronis R. de Supinski, Damian W. I. Rouson:
Performance on HPC Platforms Is Possible Without C++. Comput. Sci. Eng. 25(5): 48-52 (2023) - [c37]Tal Ben-Nun, Berke Ates, Alexandru Calotoiu, Torsten Hoefler:
Bridging Control-Centric and Data-Centric Optimization. CGO 2023: 173-185 - [c36]Tal Ben-Nun, Lukas Gianinazzi, Torsten Hoefler, Yishai Oltchik:
Maximum Flows in Parametric Graph Templates. CIAC 2023: 97-111 - [c35]Lukas Trümper, Tal Ben-Nun, Philipp Schaad, Alexandru Calotoiu, Torsten Hoefler:
Performance Embeddings: A Similarity-Based Transfer Tuning Approach to Performance Optimization. ICS 2023: 50-62 - [c34]Roberto L. Castro, Andrei Ivanov, Diego Andrade, Tal Ben-Nun, Basilio B. Fraguela, Torsten Hoefler:
VENOM: A Vectorized N: M Format for Unleashing the Power of Sparse Tensor Cores. SC 2023: 72:1-72:14 - [c33]Philipp Schaad, Timo Schneider, Tal Ben-Nun, Alexandru Calotoiu, Alexandros Nikolaos Ziogas, Torsten Hoefler:
FuzzyFlow: Leveraging Dataflow To Find and Squash Program Optimization Bugs. SC 2023: 88:1-88:15 - [d1]Lukas Gianinazzi, Alexandros Nikolaos Ziogas, Piotr Luczynski, Saleh Ashkboosh, Langwen Huang, Florian Scheidl, Chio Ge, Armon Carigiet, Maciej Besta, Tal Ben-Nun, Torsten Hoefler:
Arrow Matrix Decompositions. Zenodo, 2023 - [i46]Niels Gleinig, Tal Ben-Nun, Torsten Hoefler:
A Theory of I/O-Efficient Sparse Neural Network Inference. CoRR abs/2301.01048 (2023) - [i45]Lukas Trümper, Tal Ben-Nun, Philipp Schaad, Alexandru Calotoiu, Torsten Hoefler:
Performance Embeddings: A Similarity-based Approach to Automatic Performance Optimization. CoRR abs/2303.08142 (2023) - [i44]Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Saleh Ashkboos, Torsten Hoefler:
STen: Productive and Efficient Sparsity in PyTorch. CoRR abs/2304.07613 (2023) - [i43]Tal Ben-Nun, Berke Ates, Alexandru Calotoiu, Torsten Hoefler:
Bridging Control-Centric and Data-Centric Optimization. CoRR abs/2306.00366 (2023) - [i42]Philipp Schaad, Timo Schneider, Tal Ben-Nun, Alexandru Calotoiu, Alexandros Nikolaos Ziogas, Torsten Hoefler:
FuzzyFlow: Leveraging Dataflow To Find and Squash Program Optimization Bugs. CoRR abs/2306.16178 (2023) - [i41]Tal Ben-Nun, Lukas Gianinazzi, Torsten Hoefler, Yishai Oltchik:
Maximum Flows in Parametric Graph Templates. CoRR abs/2307.08420 (2023) - [i40]Julia Bazinska, Andrei Ivanov, Tal Ben-Nun, Nikoli Dryden, Maciej Besta, Siyuan Shen, Torsten Hoefler:
Cached Operator Reordering: A Unified View for Fast GNN Training. CoRR abs/2308.12093 (2023) - [i39]Aiden Grossman, Ludger Paehler, Konstantinos Parasyris, Tal Ben-Nun, Jacob Hegna, William S. Moses, Jose Manuel Monsalve Diaz, Mircea Trofin, Johannes Doerfert:
ComPile: A Large IR Dataset from Production Sources. CoRR abs/2309.15432 (2023) - [i38]Roberto L. Castro, Andrei Ivanov, Diego Andrade, Tal Ben-Nun, Basilio B. Fraguela, Torsten Hoefler:
VENOM: A Vectorized N: M Format for Unleashing the Power of Sparse Tensor Cores. CoRR abs/2310.02065 (2023) - 2022
- [c32]Carl-Johannes Johnsen, Tiziano De Matteis, Tal Ben-Nun, Johannes de Fine Licht, Torsten Hoefler:
Temporal Vectorization: A Compiler Approach to Automatic Multi-Pumping. ICCAD 2022: 85:1-85:9 - [c31]Alexandru Calotoiu, Tal Ben-Nun, Grzegorz Kwasniewski, Johannes de Fine Licht, Timo Schneider, Philipp Schaad, Torsten Hoefler:
Lifting C semantics for dataflow optimization. ICS 2022: 17:1-17:13 - [c30]Oliver Rausch, Tal Ben-Nun, Nikoli Dryden, Andrei Ivanov, Shigang Li, Torsten Hoefler:
A data-centric optimization framework for machine learning. ICS 2022: 36:1-36:13 - [c29]Saleh Ashkboos, Langwen Huang, Nikoli Dryden, Tal Ben-Nun, Peter Dueben, Lukas Gianinazzi, Luca Kummer, Torsten Hoefler:
ENS-10: A Dataset For Post-Processing Ensemble Weather Forecasts. NeurIPS 2022 - [c28]Alexandros Nikolaos Ziogas, Grzegorz Kwasniewski, Tal Ben-Nun, Timo Schneider, Torsten Hoefler:
Deinsum: Practically I/O Optimal Multi-Linear Algebra. SC 2022: 25:1-25:15 - [c27]Philipp Schaad, Tal Ben-Nun, Torsten Hoefler:
Boosting Performance Optimization with Interactive Data Movement Visualization. SC 2022: 64:1-64:16 - [c26]Tal Ben-Nun, Linus Groner, Florian Deconinck, Tobias Wicky, Eddie Davis, Johann Dahm, Oliver Elbert, Rhea George, Jeremy McGibbon, Lukas Trümper, Elynn Wu, Oliver Fuhrer, Thomas C. Schulthess, Torsten Hoefler:
Productive Performance Engineering for Weather and Climate Modeling with Python. SC 2022: 73:1-73:14 - [i37]Tal Ben-Nun, Linus Groner, Florian Deconinck, Tobias Wicky, Eddie Davis, Johann Dahm, Oliver Elbert, Rhea George, Jeremy McGibbon, Lukas Trümper, Elynn Wu, Oliver Fuhrer, Thomas C. Schulthess, Torsten Hoefler:
Productive Performance Engineering for Weather and Climate Modeling with Python. CoRR abs/2205.04148 (2022) - [i36]Lukas Gianinazzi, Tal Ben-Nun, Saleh Ashkboos, Yves Baumann, Piotr Luczynski, Torsten Hoefler:
The spatial computer: A model for energy-efficient parallel computation. CoRR abs/2205.04934 (2022) - [i35]Alexandros Nikolaos Ziogas, Grzegorz Kwasniewski, Tal Ben-Nun, Timo Schneider, Torsten Hoefler:
Deinsum: Practically I/O Optimal Multilinear Algebra. CoRR abs/2206.08301 (2022) - [i34]Saleh Ashkboos, Langwen Huang, Nikoli Dryden, Tal Ben-Nun, Peter Dueben, Lukas Gianinazzi, Luca Kummer, Torsten Hoefler:
ENS-10: A Dataset For Post-Processing Ensemble Weather Forecast. CoRR abs/2206.14786 (2022) - [i33]Philipp Schaad, Tal Ben-Nun, Torsten Hoefler:
Boosting Performance Optimization with Interactive Data Movement Visualization. CoRR abs/2207.07433 (2022) - [i32]Carl-Johannes Johnsen, Tiziano De Matteis, Tal Ben-Nun, Johannes de Fine Licht, Torsten Hoefler:
Temporal Vectorization: A Compiler Approach to Automatic Multi-Pumping. CoRR abs/2210.04598 (2022) - [i31]Johannes de Fine Licht, Tiziano De Matteis, Tal Ben-Nun, Andreas Kuster, Oliver Rausch, Manuel Burger, Carl-Johannes Johnsen, Torsten Hoefler:
Python FPGA Programming with Data-Centric Multi-Level Design. CoRR abs/2212.13768 (2022) - 2021
- [j8]Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, Alexandra Peste:
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22: 241:1-241:124 (2021) - [j7]Shigang Li, Tal Ben-Nun, Giorgi Nadiradze, Salvatore Di Girolamo, Nikoli Dryden, Dan Alistarh, Torsten Hoefler:
Breaking (Global) Barriers in Parallel Stochastic Optimization With Wait-Avoiding Group Averaging. IEEE Trans. Parallel Distributed Syst. 32(7): 1725-1739 (2021) - [c25]Johannes de Fine Licht, Andreas Kuster, Tiziano De Matteis, Tal Ben-Nun, Dominic Hofer, Torsten Hoefler:
StencilFlow: Mapping Large Stencil Programs to Distributed Spatial Computing Systems. CGO 2021: 315-326 - [c24]Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F. P. O'Boyle, Hugh Leather:
ProGraML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations. ICML 2021: 2244-2253 - [c23]Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, Torsten Hoefler:
NPBench: a benchmarking suite for high-performance NumPy. ICS 2021: 63-74 - [c22]Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, Torsten Hoefler:
Data Movement Is All You Need: A Case Study on Optimizing Transformers. MLSys 2021 - [c21]Grzegorz Kwasniewski, Tal Ben-Nun, Alexandros Nikolaos Ziogas, Timo Schneider, Maciej Besta, Torsten Hoefler:
On the parallel I/O optimality of linear algebra kernels: near-optimal LU factorization. PPoPP 2021: 463-464 - [c20]Grzegorz Kwasniewski, Marko Kabic, Tal Ben-Nun, Alexandros Nikolaos Ziogas, Jens Eirik Saethre, André Gaillard, Timo Schneider, Maciej Besta, Anton Kozhevnikov, Joost VandeVondele, Torsten Hoefler:
On the parallel I/O optimality of linear algebra kernels: near-optimal matrix factorizations. SC 2021: 70 - [c19]Nikoli Dryden, Roman Böhringer, Tal Ben-Nun, Torsten Hoefler:
Clairvoyant prefetching for distributed machine learning I/O. SC 2021: 92 - [c18]Alexandros Nikolaos Ziogas, Timo Schneider, Tal Ben-Nun, Alexandru Calotoiu, Tiziano De Matteis, Johannes de Fine Licht, Luca Lavarini, Torsten Hoefler:
Productivity, portability, performance: data-centric Python. SC 2021: 95 - [c17]Grzegorz Kwasniewski, Tal Ben-Nun, Lukas Gianinazzi, Alexandru Calotoiu, Timo Schneider, Alexandros Nikolaos Ziogas, Maciej Besta, Torsten Hoefler:
Pebbles, Graphs, and a Pinch of Combinatorics: Towards Tight I/O Lower Bounds for Statically Analyzable Programs. SPAA 2021: 328-339 - [i30]Roman Böhringer, Nikoli Dryden, Tal Ben-Nun, Torsten Hoefler:
Clairvoyant Prefetching for Distributed Machine Learning I/O. CoRR abs/2101.08734 (2021) - [i29]Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, Alexandra Peste:
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. CoRR abs/2102.00554 (2021) - [i28]Grzegorz Kwasniewski, Tal Ben-Nun, Lukas Gianinazzi, Alexandru Calotoiu, Timo Schneider, Alexandros Nikolaos Ziogas, Maciej Besta, Torsten Hoefler:
Pebbles, Graphs, and a Pinch of Combinatorics: Towards Tight I/O Lower Bounds for Statically Analyzable Programs. CoRR abs/2105.07203 (2021) - [i27]Lukas Gianinazzi, Maximilian Fries, Nikoli Dryden, Tal Ben-Nun, Maciej Besta, Torsten Hoefler:
Learning Combinatorial Node Labeling Algorithms. CoRR abs/2106.03594 (2021) - [i26]Alexandros Nikolaos Ziogas, Timo Schneider, Tal Ben-Nun, Alexandru Calotoiu, Tiziano De Matteis, Johannes de Fine Licht, Luca Lavarini, Torsten Hoefler:
Productivity, Portability, Performance: Data-Centric Python. CoRR abs/2107.00555 (2021) - [i25]Grzegorz Kwasniewski, Marko Kabic, Tal Ben-Nun, Alexandros Nikolaos Ziogas, Jens Eirik Saethre, André Gaillard, Timo Schneider, Maciej Besta, Anton Kozhevnikov, Joost VandeVondele, Torsten Hoefler:
On the Parallel I/O Optimality of Linear Algebra Kernels: Near-Optimal Matrix Factorizations. CoRR abs/2108.09337 (2021) - [i24]Oliver Rausch, Tal Ben-Nun, Nikoli Dryden, Andrei Ivanov, Shigang Li, Torsten Hoefler:
A Data-Centric Optimization Framework for Machine Learning. CoRR abs/2110.10802 (2021) - [i23]Alexandru Calotoiu, Tal Ben-Nun, Grzegorz Kwasniewski, Johannes de Fine Licht, Timo Schneider, Philipp Schaad, Torsten Hoefler:
Lifting C Semantics for Dataflow Optimization. CoRR abs/2112.11879 (2021) - 2020
- [j6]Tal Ben-Nun, Michael Sutton, Sreepathi Pai, Keshav Pingali:
Groute: Asynchronous Multi-GPU Programming Model with Applications to Large-scale Graph Processing. ACM Trans. Parallel Comput. 7(3): 18:1-18:27 (2020) - [j5]Maciej Besta, Marc Fischer, Tal Ben-Nun, Dimitri Stanojevic, Johannes de Fine Licht, Torsten Hoefler:
Substream-Centric Maximum Matchings on FPGA. ACM Trans. Reconfigurable Technol. Syst. 13(2): 8:1-8:33 (2020) - [c16]Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, Daniel Soudry:
Augment Your Batch: Improving Generalization Through Instance Repetition. CVPR 2020: 8126-8135 - [c15]Shigang Li, Tal Ben-Nun, Salvatore Di Girolamo, Dan Alistarh, Torsten Hoefler:
Taming unbalanced training workloads in deep learning with partial collective operations. PPoPP 2020: 45-61 - [c14]Tal Ben-Nun, Todd Gamblin, Daisy S. Hollman, Hari Krishnan, Chris J. Newburn:
Workflows are the New Applications: Challenges in Performance, Portability, and Productivity. P3HPC@SC 2020: 57-69 - [i22]Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Hugh Leather:
ProGraML: Graph-based Deep Learning for Program Optimization and Analysis. CoRR abs/2003.10536 (2020) - [i21]Shigang Li, Tal Ben-Nun, Dan Alistarh, Salvatore Di Girolamo, Nikoli Dryden, Torsten Hoefler:
Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging. CoRR abs/2005.00124 (2020) - [i20]Peter Grönquist, Chengyuan Yao, Tal Ben-Nun, Nikoli Dryden, Peter Dueben, Shigang Li, Torsten Hoefler:
Deep Learning for Post-Processing Ensemble Weather Forecasts. CoRR abs/2005.08748 (2020) - [i19]Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, Torsten Hoefler:
Data Movement Is All You Need: A Case Study on Optimizing Transformers. CoRR abs/2007.00072 (2020) - [i18]Grzegorz Kwasniewski, Tal Ben-Nun, Alexandros Nikolaos Ziogas, Timo Schneider, Maciej Besta, Torsten Hoefler:
On the Parallel I/O Optimality of Linear Algebra Kernels: Near-Optimal LU Factorization. CoRR abs/2010.05975 (2020) - [i17]Maciej Besta, Marc Fischer, Tal Ben-Nun, Dimitri Stanojevic, Johannes de Fine Licht, Torsten Hoefler:
Substream-Centric Maximum Matchings on FPGA. CoRR abs/2010.14684 (2020) - [i16]Johannes de Fine Licht, Andreas Kuster, Tiziano De Matteis, Tal Ben-Nun, Dominic Hofer, Torsten Hoefler:
StencilFlow: Mapping Large Stencil Programs to Distributed Spatial Computing Systems. CoRR abs/2010.15218 (2020) - [i15]Tal Ben-Nun, Lukas Gianinazzi, Torsten Hoefler, Yishai Oltchik:
Parametric Graph Templates: Properties and Algorithms. CoRR abs/2011.07001 (2020) - [i14]Chris Cummins, Hugh Leather, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F. P. O'Boyle:
Deep Data Flow Analysis. CoRR abs/2012.01470 (2020)
2010 – 2019
- 2019
- [j4]Tal Ben-Nun, Torsten Hoefler:
Demystifying Parallel and Distributed Deep Learning: An In-depth Concurrency Analysis. ACM Comput. Surv. 52(4): 65:1-65:43 (2019) - [c13]Maciej Besta, Marc Fischer, Tal Ben-Nun, Johannes de Fine Licht, Torsten Hoefler:
Substream-Centric Maximum Matchings on FPGA. FPGA 2019: 152-161 - [c12]Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, Torsten Hoefler:
A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning. IPDPS 2019: 66-77 - [c11]Alexandros Nikolaos Ziogas, Tal Ben-Nun, Guillermo Indalecio Fernández, Timo Schneider, Mathieu Luisier, Torsten Hoefler:
A data-centric approach to extreme-scale ab initio dissipative quantum transport simulations. SC 2019: 1:1-1:13 - [c10]Alexandros Nikolaos Ziogas, Tal Ben-Nun, Guillermo Indalecio Fernández, Timo Schneider, Mathieu Luisier, Torsten Hoefler:
Optimizing the data movement in quantum transport simulations via data-centric parallel programming. SC 2019: 78:1-78:17 - [c9]Tal Ben-Nun, Johannes de Fine Licht, Alexandros Nikolaos Ziogas, Timo Schneider, Torsten Hoefler:
Stateful dataflow multigraphs: a data-centric model for performance portability on heterogeneous architectures. SC 2019: 81:1-81:14 - [i13]Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, Daniel Soudry:
Augment your batch: better training with larger batches. CoRR abs/1901.09335 (2019) - [i12]Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, Torsten Hoefler:
A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning. CoRR abs/1901.10183 (2019) - [i11]Tal Ben-Nun, Johannes de Fine Licht, Alexandros Nikolaos Ziogas, Timo Schneider, Torsten Hoefler:
Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs. CoRR abs/1902.10345 (2019) - [i10]Maciej Besta, Dimitri Stanojevic, Johannes de Fine Licht, Tal Ben-Nun, Torsten Hoefler:
Graph Processing on FPGAs: Taxonomy, Survey, Challenges. CoRR abs/1903.06697 (2019) - [i9]Shigang Li, Tal Ben-Nun, Salvatore Di Girolamo, Dan Alistarh, Torsten Hoefler:
Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations. CoRR abs/1908.04207 (2019) - [i8]Elad Hoffer, Berry Weinstein, Itay Hubara, Tal Ben-Nun, Torsten Hoefler, Daniel Soudry:
Mix & Match: training convnets with mixed image sizes for improved accuracy, speed and scale resiliency. CoRR abs/1908.08986 (2019) - [i7]Peter Grönquist, Tal Ben-Nun, Nikoli Dryden, Peter Dueben, Luca Lavarini, Shigang Li, Torsten Hoefler:
Predicting Weather Uncertainty with Deep Convnets. CoRR abs/1911.00630 (2019) - [i6]Alexandros Nikolaos Ziogas, Tal Ben-Nun, Guillermo Indalecio Fernández, Timo Schneider, Mathieu Luisier, Torsten Hoefler:
Optimizing the Data Movement in Quantum Transport Simulations via Data-Centric Parallel Programming. CoRR abs/1912.08810 (2019) - [i5]Alexandros Nikolaos Ziogas, Tal Ben-Nun, Guillermo Indalecio Fernández, Timo Schneider, Mathieu Luisier, Torsten Hoefler:
A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport Simulations. CoRR abs/1912.10024 (2019) - 2018
- [c8]Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka:
Accelerating Deep Learning Frameworks with Micro-Batches. CLUSTER 2018: 402-412 - [c7]Michael Sutton, Tal Ben-Nun, Amnon Barak:
Optimizing Parallel Graph Connectivity Computation via Subgraph Sampling. IPDPS 2018: 12-21 - [c6]Tal Ben-Nun, Alice Shoshana Jakobovits, Torsten Hoefler:
Neural Code Comprehension: A Learnable Representation of Code Semantics. NeurIPS 2018: 3589-3601 - [i4]Tal Ben-Nun, Torsten Hoefler:
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis. CoRR abs/1802.09941 (2018) - [i3]Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka:
μ-cuDNN: Accelerating Deep Learning Frameworks with Micro-Batching. CoRR abs/1804.04806 (2018) - [i2]Tal Ben-Nun, Alice Shoshana Jakobovits, Torsten Hoefler:
Neural Code Comprehension: A Learnable Representation of Code Semantics. CoRR abs/1806.07336 (2018) - 2017
- [c5]Tomas Karnagel, Tal Ben-Nun, Matthias Werner, Dirk Habich, Wolfgang Lehner:
Big data causing big (TLB) problems: taming random memory accesses on the GPU. DaMoN 2017: 6:1-6:10 - [c4]Tal Ben-Nun, Michael Sutton, Sreepathi Pai, Keshav Pingali:
Groute: An Asynchronous Multi-GPU Programming Model for Irregular Computations. PPoPP 2017: 235-248 - 2016
- [b1]Tal Ben-Nun:
Memory-Oriented Programming : A Data-Centric Programming Model for Systems with Multiple Parallel Accelerators (שער נוסף בעברית: תכנות מונחה זיכרון : מודל תכנות עבור מערכות מרובות מאיצים מקביליים.). Hebrew University of Jerusalem, Israel, 2016 - [j3]Avi Ginsburg, Tal Ben-Nun, Roi Asor, Asaf Shemesh, Israel Ringel, Uri Raviv:
Reciprocal Grids: A Hierarchical Algorithm for Computing Solution X-ray Scattering Curves from Supramolecular Complexes at High Resolution. J. Chem. Inf. Model. 56(8): 1518-1527 (2016) - [j2]Tal Ben-Nun, Amnon Barak, Uri Raviv:
Spline-based parallel nonlinear optimization of function sequences. J. Parallel Distributed Comput. 93-94: 132-145 (2016) - [p1]Carsten Weinhold, Adam Lackorzynski, Jan Bierbaum, Martin Küttler, Maksym Planeta, Hermann Härtig, Amnon Shiloh, Ely Levy, Tal Ben-Nun, Amnon Barak, Thomas Steinke, Thorsten Schütt, Jan Fajerski, Alexander Reinefeld, Matthias Lieber, Wolfgang E. Nagel:
FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing. Software for Exascale Computing 2016: 405-426 - [i1]Michael Sutton, Tal Ben-Nun, Amnon Barak, Sreepathi Pai, Keshav Pingali:
Adaptive Work-Efficient Connected Components on the GPU. CoRR abs/1612.01178 (2016) - 2015
- [c3]Tal Ben-Nun, Ely Levy, Amnon Barak, Eri Rubin:
Memory access patterns: the missing piece of the multi-GPU puzzle. SC 2015: 19:1-19:12 - 2014
- [j1]Eri Rubin, Ely Levy, Amnon Barak, Tal Ben-Nun:
MAPS: Optimizing Massively Parallel Applications Using Device-Level Memory Abstraction. ACM Trans. Archit. Code Optim. 11(4): 44:1-44:22 (2014) - 2010
- [c2]Tal Ben-Nun, Yoav Etsion, Dror G. Feitelson:
Design and implementation of a generic resource sharing virtual time dispatcher. SYSTOR 2010
2000 – 2009
- 2009
- [c1]Yoav Etsion, Tal Ben-Nun, Dror G. Feitelson:
A global scheduling framework for virtualization environments. IPDPS 2009: 1-8
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-22 20:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint