default search action
Austin R. Benson
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j17]Kiran Tomlinson, Austin R. Benson:
Graph-based methods for discrete choice. Netw. Sci. 12(1): 21-40 (2024) - 2023
- [j16]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
Augmented Sparsifiers for Generalized Hypergraph Cuts. J. Mach. Learn. Res. 24: 207:1-207:50 (2023) - 2022
- [j15]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
Hypergraph Cuts with General Splitting Functions. SIAM Rev. 64(3): 650-685 (2022) - [j14]Junteng Jia, Austin R. Benson:
A Unifying Generative Model for Graph Learning Algorithms: Label Propagation, Graph Convolutions, and Combinations. SIAM J. Math. Data Sci. 4(1): 100-125 (2022) - [c43]Konstantin Prokopchik, Austin R. Benson, Francesco Tudisco:
Nonlinear Feature Diffusion on Hypergraphs. ICML 2022: 17945-17958 - [c42]Austin R. Benson, Nate Veldt, David F. Gleich:
Fauci-Email: A JSON Digest of Anthony Fauci's Released Emails. ICWSM 2022: 1208-1217 - [c41]Rongzhe Wei, Haoteng Yin, Junteng Jia, Austin R. Benson, Pan Li:
Understanding Non-linearity in Graph Neural Networks from the Bayesian-Inference Perspective. NeurIPS 2022 - [c40]Ilya Amburg, Nate Veldt, Austin R. Benson:
Diverse and Experienced Group Discovery via Hypergraph Clustering. SDM 2022: 145-153 - [d1]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
Combinatorial Measures of Higher-order Homophily for Group Interaction Datasets. Zenodo, 2022 - [i66]Kiran Tomlinson, Austin R. Benson:
Graph-Based Methods for Discrete Choice. CoRR abs/2205.11365 (2022) - [i65]Rongzhe Wei, Haoteng Yin, Junteng Jia, Austin R. Benson, Pan Li:
Understanding Non-linearity in Graph Neural Networks from the Bayesian-Inference Perspective. CoRR abs/2207.11311 (2022) - [i64]Jonas L. Juul, Austin R. Benson, Jon M. Kleinberg:
Hypergraph patterns and collaboration structure. CoRR abs/2210.02163 (2022) - 2021
- [j13]Xiang Fu, Shangdi Yu, Austin R. Benson:
Modelling and analysis of tagging networks in Stack Exchange communities. J. Complex Networks 8(5) (2021) - [j12]Vasileios Charisopoulos, Austin R. Benson, Anil Damle:
Communication-Efficient Distributed Eigenspace Estimation. SIAM J. Math. Data Sci. 3(4): 1067-1092 (2021) - [c39]Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, Austin R. Benson:
Combining Label Propagation and Simple Models out-performs Graph Neural Networks. ICLR 2021 - [c38]Derek Lim, Austin R. Benson:
Expertise and Dynamics within Crowdsourced Musical Knowledge Curation: A Case Study of the Genius Platform. ICWSM 2021: 373-384 - [c37]Kiran Tomlinson, Johan Ugander, Austin R. Benson:
Choice Set Confounding in Discrete Choice. KDD 2021: 1571-1581 - [c36]Kiran Tomlinson, Austin R. Benson:
Learning Interpretable Feature Context Effects in Discrete Choice. KDD 2021: 1582-1592 - [c35]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
The Generalized Mean Densest Subgraph Problem. KDD 2021: 1604-1614 - [c34]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
Approximate Decomposable Submodular Function Minimization for Cardinality-Based Components. NeurIPS 2021: 3744-3756 - [c33]Katherine Van Koevering, Austin R. Benson, Jon M. Kleinberg:
Random Graphs with Prescribed K-Core Sequences: A New Null Model for Network Analysis. WWW 2021: 367-378 - [c32]Francesco Tudisco, Austin R. Benson, Konstantin Prokopchik:
Nonlinear Higher-Order Label Spreading. WWW 2021: 2402-2413 - [i63]Junteng Jia, Austin R. Benson:
A Unifying Generative Model for Graph Learning Algorithms: Label Propagation, Graph Convolutions, and Combinations. CoRR abs/2101.07730 (2021) - [i62]Philip S. Chodrow, Nate Veldt, Austin R. Benson:
Generative hypergraph clustering: from blockmodels to modularity. CoRR abs/2101.09611 (2021) - [i61]Katherine Van Koevering, Austin R. Benson, Jon M. Kleinberg:
Random Graphs with Prescribed K-Core Sequences: A New Null Model for Network Analysis. CoRR abs/2102.12604 (2021) - [i60]Austin R. Benson, David F. Gleich, Desmond J. Higham:
Higher-order Network Analysis Takes Off, Fueled by Classical Ideas and New Data. CoRR abs/2103.05031 (2021) - [i59]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
Higher-order Homophily is Combinatorially Impossible. CoRR abs/2103.11818 (2021) - [i58]Francesco Tudisco, Konstantin Prokopchik, Austin R. Benson:
A nonlinear diffusion method for semi-supervised learning on hypergraphs. CoRR abs/2103.14867 (2021) - [i57]Kiran Tomlinson, Johan Ugander, Austin R. Benson:
Choice Set Confounding in Discrete Choice. CoRR abs/2105.07959 (2021) - [i56]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
The Generalized Mean Densest Subgraph Problem. CoRR abs/2106.00909 (2021) - [i55]Junteng Jia, Cenk Baykal, Vamsi K. Potluru, Austin R. Benson:
Graph Belief Propagation Networks. CoRR abs/2106.03033 (2021) - [i54]Abhay Singh, Qian Huang, Sijia Linda Huang, Omkar Bhalerao, Horace He, Ser-Nam Lim, Austin R. Benson:
Edge Proposal Sets for Link Prediction. CoRR abs/2106.15810 (2021) - [i53]Austin R. Benson, Nate Veldt, David F. Gleich:
fauci-email: a json digest of Anthony Fauci's released emails. CoRR abs/2108.01239 (2021) - [i52]Arnab Sarker, Jean-Baptiste Seby, Austin R. Benson, Ali Jadbabaie:
Higher Order Information Identifies Tie Strength. CoRR abs/2108.02091 (2021) - [i51]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
Approximate Decomposable Submodular Function Minimization for Cardinality-Based Components. CoRR abs/2110.14859 (2021) - 2020
- [j11]Hao Yin, Austin R. Benson, Johan Ugander:
Measuring directed triadic closure with closure coefficients. Netw. Sci. 8(4): 551-573 (2020) - [j10]Michael T. Schaub, Austin R. Benson, Paul Horn, Gabor Lippner, Ali Jadbabaie:
Random Walks on Simplicial Complexes and the Normalized Hodge 1-Laplacian. SIAM Rev. 62(2): 353-391 (2020) - [j9]Thomas Reeves, Anil Damle, Austin R. Benson:
Network Interpolation. SIAM J. Math. Data Sci. 2(2): 505-528 (2020) - [j8]Huda Nassar, Austin R. Benson, David F. Gleich:
Neighborhood and PageRank methods for pairwise link prediction. Soc. Netw. Anal. Min. 10(1): 63 (2020) - [c31]Kiran Tomlinson, Austin R. Benson:
Choice Set Optimization Under Discrete Choice Models of Group Decisions. ICML 2020: 9514-9525 - [c30]Junteng Jia, Austin R. Benson:
Residual Correlation in Graph Neural Network Regression. KDD 2020: 588-598 - [c29]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
Minimizing Localized Ratio Cut Objectives in Hypergraphs. KDD 2020: 1708-1718 - [c28]Vasileios Charisopoulos, Austin R. Benson, Anil Damle:
Entrywise convergence of iterative methods for eigenproblems. NeurIPS 2020 - [c27]Qian Huang, Horace He, Abhay Singh, Yan Zhang, Ser-Nam Lim, Austin R. Benson:
Better Set Representations For Relational Reasoning. NeurIPS 2020 - [c26]Raunak Kumar, Paul Liu, Moses Charikar, Austin R. Benson:
Retrieving Top Weighted Triangles in Graphs. WSDM 2020: 295-303 - [c25]Katherine Van Koevering, Austin R. Benson, Jon M. Kleinberg:
Frozen Binomials on the Web: Word Ordering and Language Conventions in Online Text. WWW 2020: 606-616 - [c24]Ilya Amburg, Nate Veldt, Austin R. Benson:
Clustering in graphs and hypergraphs with categorical edge labels. WWW 2020: 706-717 - [c23]Huda Nassar, Caitlin Kennedy, Shweta Jain, Austin R. Benson, David F. Gleich:
Using Cliques with Higher-order Spectral Embeddings Improves Graph Visualizations. WWW 2020: 2927-2933 - [i50]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
Hypergraph Cuts with General Splitting Functions. CoRR abs/2001.02817 (2020) - [i49]Kiran Tomlinson, Austin R. Benson:
Choice Set Optimization Under Discrete Choice Models of Group Decisions. CoRR abs/2002.00421 (2020) - [i48]Junteng Jia, Austin R. Benson:
Outcome Correlation in Graph Neural Network Regression. CoRR abs/2002.08274 (2020) - [i47]Vasileios Charisopoulos, Austin R. Benson, Anil Damle:
Entrywise convergence of iterative methods for eigenproblems. CoRR abs/2002.08491 (2020) - [i46]Nate Veldt, Austin R. Benson, Jon M. Kleinberg:
Localized Flow-Based Clustering in Hypergraphs. CoRR abs/2002.09441 (2020) - [i45]Katherine Van Koevering, Austin R. Benson, Jon M. Kleinberg:
Frozen Binomials on the Web: Word Ordering and Language Conventions in Online Text. CoRR abs/2003.03612 (2020) - [i44]Qian Huang, Horace He, Abhay Singh, Yan Zhang, Ser-Nam Lim, Austin R. Benson:
Set-Structured Latent Representations. CoRR abs/2003.04448 (2020) - [i43]Francesco Tudisco, Austin R. Benson, Konstantin Prokopchik:
Nonlinear Higher-Order Label Spreading. CoRR abs/2006.04762 (2020) - [i42]Ilya Amburg, Nate Veldt, Austin R. Benson:
Fair Clustering for Diverse and Experienced Groups. CoRR abs/2006.05645 (2020) - [i41]Derek Lim, Austin R. Benson:
Expertise and Dynamics within Crowdsourced Musical Knowledge Curation: A Case Study of the Genius Platform. CoRR abs/2006.08108 (2020) - [i40]Austin R. Benson, Paul Liu, Hao Yin:
A simple bipartite graph projection model for clustering in networks. CoRR abs/2007.00761 (2020) - [i39]Austin R. Benson, Jon M. Kleinberg, Nate Veldt:
Augmented Sparsifiers for Generalized Hypergraph Cuts. CoRR abs/2007.08075 (2020) - [i38]Vasileios Charisopoulos, Austin R. Benson, Anil Damle:
Communication-efficient distributed eigenspace estimation. CoRR abs/2009.02436 (2020) - [i37]Kiran Tomlinson, Austin R. Benson:
Learning Interpretable Feature Context Effects in Discrete Choice. CoRR abs/2009.03417 (2020) - [i36]Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, Austin R. Benson:
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks. CoRR abs/2010.13993 (2020) - [i35]Austin R. Benson, Anil Damle, Alex Townsend:
Over-parametrized neural networks as under-determined linear systems. CoRR abs/2010.15959 (2020)
2010 – 2019
- 2019
- [j7]Austin R. Benson, David F. Gleich:
Computing Tensor Z-Eigenvectors with Dynamical Systems. SIAM J. Matrix Anal. Appl. 40(4): 1311-1324 (2019) - [j6]Austin R. Benson:
Three Hypergraph Eigenvector Centralities. SIAM J. Math. Data Sci. 1(2): 293-312 (2019) - [c22]Huda Nassar, Austin R. Benson, David F. Gleich:
Pairwise link prediction. ASONAM 2019: 386-393 - [c21]Junteng Jia, Michael T. Schaub, Santiago Segarra, Austin R. Benson:
Graph-based Semi-Supervised & Active Learning for Edge Flows. KDD 2019: 761-771 - [c20]Kun Dong, Austin R. Benson, David Bindel:
Network Density of States. KDD 2019: 1152-1161 - [c19]Junteng Jia, Austin R. Benson:
Neural Jump Stochastic Differential Equations. NeurIPS 2019: 9843-9854 - [c18]Paul Liu, Austin R. Benson, Moses Charikar:
Sampling Methods for Counting Temporal Motifs. WSDM 2019: 294-302 - [c17]Hao Yin, Austin R. Benson, Jure Leskovec:
The Local Closure Coefficient: A New Perspective On Network Clustering. WSDM 2019: 303-311 - [c16]Junteng Jia, Austin R. Benson:
Random Spatial Network Models for Core-Periphery Structure. WSDM 2019: 366-374 - [c15]Austin R. Benson, Jon M. Kleinberg:
Link Prediction in Networks with Core-Fringe Data. WWW 2019: 94-104 - [c14]Jan Overgoor, Austin R. Benson, Johan Ugander:
Choosing to Grow a Graph: Modeling Network Formation as Discrete Choice. WWW 2019: 1409-1420 - [i34]Xiang Fu, Shangdi Yu, Austin R. Benson:
Modeling and Analysis of Tagging Networks in Stack Exchange Communities. CoRR abs/1902.02372 (2019) - [i33]Thomas Reeves, Anil Damle, Austin R. Benson:
Network interpolation. CoRR abs/1905.01253 (2019) - [i32]Ilya Amburg, Jon M. Kleinberg, Austin R. Benson:
Planted Hitting Set Recovery in Hypergraphs. CoRR abs/1905.05839 (2019) - [i31]Junteng Jia, Michael T. Schaub, Santiago Segarra, Austin R. Benson:
Graph-based Semi-Supervised & Active Learning for Edge Flows. CoRR abs/1905.07451 (2019) - [i30]Kun Dong, Austin R. Benson, David Bindel:
Network Density of States. CoRR abs/1905.09758 (2019) - [i29]Junteng Jia, Austin R. Benson:
Neural Jump Stochastic Differential Equations. CoRR abs/1905.10403 (2019) - [i28]Hao Yin, Austin R. Benson, Johan Ugander:
Measuring Directed Triadic Closure with Closure Coefficients. CoRR abs/1905.10683 (2019) - [i27]Huda Nassar, Austin R. Benson, David F. Gleich:
Pairwise Link Prediction. CoRR abs/1907.04503 (2019) - [i26]Vasileios Charisopoulos, Austin R. Benson, Anil Damle:
Incrementally Updated Spectral Embeddings. CoRR abs/1909.01188 (2019) - [i25]Raunak Kumar, Paul Liu, Moses Charikar, Austin R. Benson:
Retrieving Top Weighted Triangles in Graphs. CoRR abs/1910.00692 (2019) - [i24]Ilya Amburg, Nate Veldt, Austin R. Benson:
Hypergraph clustering with categorical edge labels. CoRR abs/1910.09943 (2019) - 2018
- [j5]Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, Jon M. Kleinberg:
Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. USA 115(48): E11221-E11230 (2018) - [c13]Austin R. Benson, Ravi Kumar, Andrew Tomkins:
Sequences of Sets. KDD 2018: 1148-1157 - [c12]Austin R. Benson, Jon M. Kleinberg:
Found Graph Data and Planted Vertex Covers. NeurIPS 2018: 1363-1374 - [c11]Austin R. Benson, Ravi Kumar, Andrew Tomkins:
A Discrete Choice Model for Subset Selection. WSDM 2018: 37-45 - [i23]Austin R. Benson:
Tools for higher-order network analysis. CoRR abs/1802.06820 (2018) - [i22]Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, Jon M. Kleinberg:
Simplicial Closure and Higher-order Link Prediction. CoRR abs/1802.06916 (2018) - [i21]Austin R. Benson, David F. Gleich:
Computing tensor Z-eigenvectors with dynamical systems. CoRR abs/1805.00903 (2018) - [i20]Austin R. Benson, Jon M. Kleinberg:
Found Graph Data and Planted Vertex Covers. CoRR abs/1805.01209 (2018) - [i19]Michael T. Schaub, Austin R. Benson, Paul Horn, Gabor Lippner, Ali Jadbabaie:
Random Walks on Simplicial Complexes and the normalized Hodge Laplacian. CoRR abs/1807.05044 (2018) - [i18]Austin R. Benson:
Three hypergraph eigenvector centralities. CoRR abs/1807.09644 (2018) - [i17]Junteng Jia, Austin R. Benson:
Detecting Core-Periphery Structure in Spatial Networks. CoRR abs/1808.06544 (2018) - [i16]Paul Liu, Austin R. Benson, Moses Charikar:
A sampling framework for counting temporal motifs. CoRR abs/1810.00980 (2018) - [i15]Jan Overgoor, Austin R. Benson, Johan Ugander:
Choosing to grow a graph: Modeling network formation as discrete choice. CoRR abs/1811.05008 (2018) - [i14]Austin R. Benson, Jon M. Kleinberg:
Core-fringe link prediction. CoRR abs/1811.11540 (2018) - 2017
- [j4]Austin R. Benson, David F. Gleich, Lek-Heng Lim:
The Spacey Random Walk: A Stochastic Process for Higher-Order Data. SIAM Rev. 59(2): 321-345 (2017) - [c10]Hao Yin, Austin R. Benson, Jure Leskovec, David F. Gleich:
Local Higher-Order Graph Clustering. KDD 2017: 555-564 - [c9]Ashwin Paranjape, Austin R. Benson, Jure Leskovec:
Motifs in Temporal Networks. WSDM 2017: 601-610 - [i13]Hao Yin, Austin R. Benson, Jure Leskovec:
Higher-order clustering in networks. CoRR abs/1704.03913 (2017) - 2016
- [j3]Grey Ballard, Austin R. Benson, Alex Druinsky, Benjamin Lipshitz, Oded Schwartz:
Improving the Numerical Stability of Fast Matrix Multiplication. SIAM J. Matrix Anal. Appl. 37(4): 1382-1418 (2016) - [c8]Tao Wu, Austin R. Benson, David F. Gleich:
General Tensor Spectral Co-clustering for Higher-Order Data. NIPS 2016: 2559-2567 - [c7]Austin R. Benson, Ravi Kumar, Andrew Tomkins:
Modeling User Consumption Sequences. WWW 2016: 519-529 - [c6]Austin R. Benson, Ravi Kumar, Andrew Tomkins:
On the Relevance of Irrelevant Alternatives. WWW 2016: 963-973 - [i12]Austin R. Benson, David F. Gleich, Lek-Heng Lim:
The Spacey Random Walk: a Stochastic Process for Higher-order Data. CoRR abs/1602.02102 (2016) - [i11]Tao Wu, Austin R. Benson, David F. Gleich:
General Tensor Spectral Co-clustering for Higher-Order Data. CoRR abs/1603.00395 (2016) - [i10]Austin R. Benson, David F. Gleich, Jure Leskovec:
Higher-order organization of complex networks. CoRR abs/1612.08447 (2016) - [i9]Ashwin Paranjape, Austin R. Benson, Jure Leskovec:
Motifs in Temporal Networks. CoRR abs/1612.09259 (2016) - 2015
- [j2]Austin R. Benson, Sven Schmit, Robert Schreiber:
Silent error detection in numerical time-stepping schemes. Int. J. High Perform. Comput. Appl. 29(4): 403-421 (2015) - [c5]Austin R. Benson, Grey Ballard:
A framework for practical parallel fast matrix multiplication. PPoPP 2015: 42-53 - [c4]Austin R. Benson, David F. Gleich, Jure Leskovec:
Tensor Spectral Clustering for Partitioning Higher-order Network Structures. SDM 2015: 118-126 - [i8]Austin R. Benson, David F. Gleich, Jure Leskovec:
Tensor Spectral Clustering for Partitioning Higher-order Network Structures. CoRR abs/1502.05058 (2015) - [i7]Grey Ballard, Austin R. Benson, Alex Druinsky, Benjamin Lipshitz, Oded Schwartz:
Improving the numerical stability of fast matrix multiplication algorithms. CoRR abs/1507.00687 (2015) - 2014
- [j1]Austin R. Benson, Jack Poulson, Kenneth Tran, Björn Engquist, Lexing Ying:
A Parallel Directional Fast Multipole Method. SIAM J. Sci. Comput. 36(4) (2014) - [c3]Austin R. Benson, Carlos Riquelme, Sven Schmit:
Learning multifractal structure in large networks. KDD 2014: 1326-1335 - [c2]Austin R. Benson, Jason D. Lee, Bartek Rajwa, David F. Gleich:
Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices. NIPS 2014: 945-953 - [i6]Austin R. Benson, Carlos Riquelme, Sven Schmit:
Learning multifractal structure in large networks. CoRR abs/1402.6787 (2014) - [i5]Austin R. Benson, Jason D. Lee, Bartek Rajwa, David F. Gleich:
Scalable methods for nonnegative matrix factorizations of near-separable tall-and-skinny matrices. CoRR abs/1402.6964 (2014) - [i4]Austin R. Benson, Grey Ballard:
A Framework for Practical Parallel Fast Matrix Multiplication. CoRR abs/1409.2908 (2014) - 2013
- [c1]Austin R. Benson, David F. Gleich, James Demmel:
Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures. IEEE BigData 2013: 264-272 - [i3]Austin R. Benson, David F. Gleich, James Demmel:
Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures. CoRR abs/1301.1071 (2013) - [i2]Austin R. Benson, Jack Poulson, Kenneth Tran, Björn Engquist, Lexing Ying:
A parallel directional Fast Multipole Method. CoRR abs/1311.4257 (2013) - [i1]Austin R. Benson, Sven Schmit, Robert Schreiber:
Silent error detection in numerical time-stepping schemes. CoRR abs/1312.2674 (2013)