default search action
Ninghao Liu
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j21]Gyeong-Geon Lee, Ehsan Latif, Xuansheng Wu, Ninghao Liu, Xiaoming Zhai:
Applying large language models and chain-of-thought for automatic scoring. Comput. Educ. Artif. Intell. 6: 100213 (2024) - [j20]Hao Zhen, Yucheng Shi, Yongcan Huang, Jidong J. Yang, Ninghao Liu:
Leveraging Large Language Models with Chain-of-Thought and Prompt Engineering for Traffic Crash Severity Analysis and Inference. Comput. 13(9): 232 (2024) - [j19]Wenxiong Liao, Zhengliang Liu, Yiyang Zhang, Xiaoke Huang, Ninghao Liu, Tianming Liu, Quanzheng Li, Xiang Li, Hongmin Cai:
Zero-shot relation triplet extraction as Next-Sentence Prediction. Knowl. Based Syst. 304: 112507 (2024) - [j18]Shuang Zhou, Xiao Huang, Ninghao Liu, Wen Zhang, Yuan-Ting Zhang, Fu-Lai Chung:
Open-world electrocardiogram classification via domain knowledge-driven contrastive learning. Neural Networks 179: 106551 (2024) - [j17]Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Mengnan Du:
Explainability for Large Language Models: A Survey. ACM Trans. Intell. Syst. Technol. 15(2): 20:1-20:38 (2024) - [j16]Xuansheng Wu, Hanqin Wan, Qiaoyu Tan, Wenlin Yao, Ninghao Liu:
DIRECT: Dual Interpretable Recommendation with Multi-aspect Word Attribution. ACM Trans. Intell. Syst. Technol. 15(5): 97:1-97:21 (2024) - [j15]Hédi Razgallah, Michalis Vlachos, Ahmad Ajalloeian, Ninghao Liu, Johannes Schneider, Alexis Steinmann:
Using Neural and Graph Neural Recommender Systems to Overcome Choice Overload: Evidence From a Music Education Platform. ACM Trans. Inf. Syst. 42(4): 92:1-92:26 (2024) - [j14]Gengchen Mai, Weiming Huang, Jin Sun, Suhang Song, Deepak Mishra, Ninghao Liu, Song Gao, Tianming Liu, Gao Cong, Yingjie Hu, Chris Cundy, Ziyuan Li, Rui Zhu, Ni Lao:
On the Opportunities and Challenges of Foundation Models for GeoAI (Vision Paper). ACM Trans. Spatial Algorithms Syst. 10(2): 11 (2024) - [c61]Zihan Guan, Mengxuan Hu, Zhongliang Zhou, Jielu Zhang, Sheng Li, Ninghao Liu:
BadSAM: Exploring Security Vulnerabilities of SAM via Backdoor Attacks (Student Abstract). AAAI 2024: 23506-23507 - [c60]Chenxu Zhao, Wei Qian, Yucheng Shi, Mengdi Huai, Ninghao Liu:
Automated Natural Language Explanation of Deep Visual Neurons with Large Models (Student Abstract). AAAI 2024: 23712-23713 - [c59]Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao Liu, Ruobing Wang, Xin Wang:
PokeMQA: Programmable knowledge editing for Multi-hop Question Answering. ACL (1) 2024: 8069-8083 - [c58]Huachi Zhou, Shuang Zhou, Hao Chen, Ninghao Liu, Fan Yang, Xiao Huang:
Enhancing Explainable Rating Prediction through Annotated Macro Concepts. ACL (1) 2024: 11736-11748 - [c57]Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, Ninghao Liu:
Retrieval-enhanced Knowledge Editing in Language Models for Multi-Hop Question Answering. CIKM 2024: 2056-2066 - [c56]Zirui He, Huiqi Deng, Haiyan Zhao, Ninghao Liu, Mengnan Du:
Mitigating Shortcuts in Language Models with Soft Label Encoding. LREC/COLING 2024: 11341-11348 - [c55]Xin Juan, Kaixiong Zhou, Ninghao Liu, Tianlong Chen, Xin Wang:
Molecular Data Programming: Towards Molecule Pseudo-labeling with Systematic Weak Supervision. CVPR 2024: 308-318 - [c54]Yili Wang, Kaixiong Zhou, Ninghao Liu, Ying Wang, Xin Wang:
Efficient Sharpness-Aware Minimization for Molecular Graph Transformer Models. ICLR 2024 - [c53]Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, Di Wang:
Improving Interpretation Faithfulness for Vision Transformers. ICML 2024 - [c52]Rui Miao, Kaixiong Zhou, Yili Wang, Ninghao Liu, Ying Wang, Xin Wang:
Rethinking Independent Cross-Entropy Loss For Graph-Structured Data. ICML 2024 - [c51]Xuansheng Wu, Wenlin Yao, Jianshu Chen, Xiaoman Pan, Xiaoyang Wang, Ninghao Liu, Dong Yu:
From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning. NAACL-HLT 2024: 2341-2369 - [c50]Xuansheng Wu, Huachi Zhou, Yucheng Shi, Wenlin Yao, Xiao Huang, Ninghao Liu:
Could Small Language Models Serve as Recommenders? Towards Data-centric Cold-start Recommendation. WWW 2024: 3566-3575 - [i81]Huaqin Zhao, Zhengliang Liu, Zihao Wu, Yiwei Li, Tianze Yang, Peng Shu, Shaochen Xu, Haixing Dai, Lin Zhao, Gengchen Mai, Ninghao Liu, Tianming Liu:
Revolutionizing Finance with LLMs: An Overview of Applications and Insights. CoRR abs/2401.11641 (2024) - [i80]John A. Miller, Mohammed Aldosari, Farah Saeed, Nasid Habib Barna, Subas Rana, Ismailcem Budak Arpinar, Ninghao Liu:
A Survey of Deep Learning and Foundation Models for Time Series Forecasting. CoRR abs/2401.13912 (2024) - [i79]Xuansheng Wu, Haiyan Zhao, Yaochen Zhu, Yucheng Shi, Fan Yang, Tianming Liu, Xiaoming Zhai, Wenlin Yao, Jundong Li, Mengnan Du, Ninghao Liu:
Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era. CoRR abs/2403.08946 (2024) - [i78]Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, Ninghao Liu:
Retrieval-Enhanced Knowledge Editing for Multi-Hop Question Answering in Language Models. CoRR abs/2403.19631 (2024) - [i77]Zihao Li, Yucheng Shi, Zirui Liu, Fan Yang, Ninghao Liu, Mengnan Du:
Quantifying Multilingual Performance of Large Language Models Across Languages. CoRR abs/2404.11553 (2024) - [i76]Rui Miao, Kaixiong Zhou, Yili Wang, Ninghao Liu, Ying Wang, Xin Wang:
Rethinking Independent Cross-Entropy Loss For Graph-Structured Data. CoRR abs/2405.15564 (2024) - [i75]Yi Fang, Dongzhe Fan, Sirui Ding, Ninghao Liu, Qiaoyu Tan:
UniGLM: Training One Unified Language Model for Text-Attributed Graphs. CoRR abs/2406.12052 (2024) - [i74]Yili Wang, Kaixiong Zhou, Ninghao Liu, Ying Wang, Xin Wang:
Efficient Sharpness-Aware Minimization for Molecular Graph Transformer Models. CoRR abs/2406.13137 (2024) - [i73]Xuansheng Wu, Padmaja Pravin Saraf, Gyeong-Geon Lee, Ehsan Latif, Ninghao Liu, Xiaoming Zhai:
Unveiling Scoring Processes: Dissecting the Differences between LLMs and Human Graders in Automatic Scoring. CoRR abs/2407.18328 (2024) - [i72]Hao Zhen, Yucheng Shi, Yongcan Huang, Jidong J. Yang, Ninghao Liu:
Leveraging Large Language Models with Chain-of-Thought and Prompt Engineering for Traffic Crash Severity Analysis and Inference. CoRR abs/2408.04652 (2024) - [i71]Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu, Yanjun Lyu, Peng Shu, Xiaowei Yu, Chao Cao, Hanqi Jiang, Hanxu Chen, Yiwei Li, Junhao Chen, Huawen Hu, Yihen Liu, Huaqin Zhao, Shaochen Xu, Haixing Dai, Lin Zhao, Ruidong Zhang, Wei Zhao, Zhenyuan Yang, Jingyuan Chen, Peilong Wang, Wei Ruan, Hui Wang, Huan Zhao, Jing Zhang, Yiming Ren, Shihuan Qin, Tong Chen, Jiaxi Li, Arif Hassan Zidan, Afrar Jahin, Minheng Chen, Sichen Xia, Jason Holmes, Yan Zhuang, Jiaqi Wang, Bochen Xu, Weiran Xia, Jichao Yu, Kaibo Tang, Yaxuan Yang, Bolun Sun, Tao Yang, Guoyu Lu, Xianqiao Wang, Lilong Chai, He Li, Jin Lu, Lichao Sun, Xin Zhang, Bao Ge, Xintao Hu, Lian Zhang, Hua Zhou, Lu Zhang, Shu Zhang, Ninghao Liu, Bei Jiang, Linglong Kong, Zhen Xiang, Yudan Ren, Jun Liu, Xi Jiang, Yu Bao, Wei Zhang, Xiang Li, Gang Li, Wei Liu, Dinggang Shen, Andrea Sikora, Xiaoming Zhai, Dajiang Zhu, Tianming Liu:
Evaluation of OpenAI o1: Opportunities and Challenges of AGI. CoRR abs/2409.18486 (2024) - [i70]Zhenyue Qin, Yu Yin, Dylan Campbell, Xuansheng Wu, Ke Zou, Yih-Chung Tham, Ninghao Liu, Xiuzhen Zhang, Qingyu Chen:
LMOD: A Large Multimodal Ophthalmology Dataset and Benchmark for Large Vision-Language Models. CoRR abs/2410.01620 (2024) - [i69]Yinhan He, Wendy Zheng, Yaochen Zhu, Jing Ma, Saumitra Mishra, Natraj Raman, Ninghao Liu, Jundong Li:
Global Graph Counterfactual Explanation: A Subgraph Mapping Approach. CoRR abs/2410.19978 (2024) - [i68]Ehsan Latif, Yifan Zhou, Shuchen Guo, Yizhu Gao, Lehong Shi, Matthew Nayaaba, Gyeong-Geon Lee, Liang Zhang, Arne Bewersdorff, Luyang Fang, Xiantong Yang, Huaqin Zhao, Hanqi Jiang, Haoran Lu, Jiaxi Li, Jichao Yu, Weihang You, Zhengliang Liu, Vincent Shung Liu, Hui Wang, Zihao Wu, Jin Lu, Fei Dou, Ping Ma, Ninghao Liu, Tianming Liu, Xiaoming Zhai:
A Systematic Assessment of OpenAI o1-Preview for Higher Order Thinking in Education. CoRR abs/2410.21287 (2024) - [i67]Yiwei Li, Huaqin Zhao, Hanqi Jiang, Yi Pan, Zhengliang Liu, Zihao Wu, Peng Shu, Jie Tian, Tianze Yang, Shaochen Xu, Yanjun Lyu, Parker Blenk, Jacob Pence, Jason Rupram, Eliza Banu, Ninghao Liu, Linbing Wang, Wen-Zhan Song, Xiaoming Zhai, Kenan Song, Dajiang Zhu, Beiwen Li, Xianqiao Wang, Tianming Liu:
Large Language Models for Manufacturing. CoRR abs/2410.21418 (2024) - [i66]Peng Shu, Junhao Chen, Zhengliang Liu, Hui Wang, Zihao Wu, Tianyang Zhong, Yiwei Li, Huaqin Zhao, Hanqi Jiang, Yi Pan, Yifan Zhou, Constance Owl, Xiaoming Zhai, Ninghao Liu, Claudio Saunt, Tianming Liu:
Transcending Language Boundaries: Harnessing LLMs for Low-Resource Language Translation. CoRR abs/2411.11295 (2024) - [i65]Zhaojun Ding, Zhengliang Liu, Hanqi Jiang, Yizhu Gao, Xiaoming Zhai, Tianming Liu, Ninghao Liu:
Foundation Models for Low-Resource Language Education (Vision Paper). CoRR abs/2412.04774 (2024) - 2023
- [j13]Ruixiang Tang, Qizhang Feng, Ninghao Liu, Fan Yang, Xia Hu:
Did You Train on My Dataset? Towards Public Dataset Protection with CleanLabel Backdoor Watermarking. SIGKDD Explor. 25(1): 43-53 (2023) - [j12]Mingyang Wan, Daochen Zha, Ninghao Liu, Na Zou:
In-Processing Modeling Techniques for Machine Learning Fairness: A Survey. ACM Trans. Knowl. Discov. Data 17(3): 35:1-35:27 (2023) - [j11]Shuang Zhou, Xiao Huang, Ninghao Liu, Huachi Zhou, Fu-Lai Chung, Long-Kai Huang:
Improving Generalizability of Graph Anomaly Detection Models via Data Augmentation. IEEE Trans. Knowl. Data Eng. 35(12): 12721-12735 (2023) - [c49]Yushun Dong, Song Wang, Jing Ma, Ninghao Liu, Jundong Li:
Interpreting Unfairness in Graph Neural Networks via Training Node Attribution. AAAI 2023: 7441-7449 - [c48]Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, Di Wang:
SEAT: Stable and Explainable Attention. AAAI 2023: 12907-12915 - [c47]Xuansheng Wu, Xinyu He, Tianming Liu, Ninghao Liu, Xiaoming Zhai:
Matching Exemplar as Next Sentence Prediction (MeNSP): Zero-Shot Prompt Learning for Automatic Scoring in Science Education. AIED 2023: 401-413 - [c46]Wenxiong Liao, Zhengliang Liu, Yiyang Zhang, Xiaoke Huang, Fei Qi, Siqi Ding, Hui Ren, Zihao Wu, Haixing Dai, Sheng Li, Lingfei Wu, Ninghao Liu, Quanzheng Li, Tianming Liu, Xiang Li, Hongmin Cai:
Coarse-to-fine Knowledge Graph Domain Adaptation based on Distantly-supervised Iterative Training. BIBM 2023: 1294-1299 - [c45]Zihan Guan, Lichao Sun, Mengnan Du, Ninghao Liu:
Attacking Neural Networks with Neural Networks: Towards Deep Synchronization for Backdoor Attacks. CIKM 2023: 608-618 - [c44]Yucheng Shi, Yushun Dong, Qiaoyu Tan, Jundong Li, Ninghao Liu:
GiGaMAE: Generalizable Graph Masked Autoencoder via Collaborative Latent Space Reconstruction. CIKM 2023: 2259-2269 - [c43]Feng Luo, Ling Liu, G. Geoff Wang, Vijay Kumar, Mark S. Ashton, Jacob D. Abernethy, Fatemeh Afghah, Matthew H. E. M. Browning, David Coyle, Philip M. Dames, Tom O'Halloran, James Hays, Patrick Hiesl, Chenfanfu Jiang, Puskar Khanal, Venkat Narayan Krovi, Sara Kuebbing, Nianyi Li, JingJing Liang, Ninghao Liu, Steve McNulty, Christopher M. Oswalt, Neil Pederson, Demetri Terzopoulos, Christopher W. Woodall, Yongkai Wu, Jian Yang, Yin Yang, Liang Zhao:
Artificial Intelligence for Climate Smart Forestry: A Forward Looking Vision. CogMI 2023: 1-10 - [c42]John A. Miller, Nasid Habib Barna, Subas Rana, Ismailcem Budak Arpinar, Ninghao Liu:
Knowledge Enhanced Deep Learning: Application to Pandemic Prediction. CIC 2023: 42-51 - [c41]Zihan Guan, Mengnan Du, Ninghao Liu:
XGBD: Explanation-Guided Graph Backdoor Detection. ECAI 2023: 932-939 - [c40]Qiaoyu Tan, Daochen Zha, Ninghao Liu, Soo-Hyun Choi, Li Li, Rui Chen, Xia Hu:
Double Wins: Boosting Accuracy and Efficiency of Graph Neural Networks by Reliable Knowledge Distillation. ICDM 2023: 1343-1348 - [c39]Guanchu Wang, Zirui Liu, Zhimeng Jiang, Ninghao Liu, Na Zou, Xia Ben Hu:
DIVISION: Memory Efficient Training via Dual Activation Precision. ICML 2023: 36036-36057 - [c38]Yucheng Shi, Mengnan Du, Xuansheng Wu, Zihan Guan, Jin Sun, Ninghao Liu:
Black-box Backdoor Defense via Zero-shot Image Purification. NeurIPS 2023 - [c37]Yucheng Shi, Kaixiong Zhou, Ninghao Liu:
ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning. ECML/PKDD (3) 2023: 104-121 - [c36]Guanchu Wang, Mengnan Du, Ninghao Liu, Na Zou, Xia Ben Hu:
Mitigating Algorithmic Bias with Limited Annotations. ECML/PKDD (2) 2023: 241-258 - [c35]Kaixiong Zhou, Soo-Hyun Choi, Zirui Liu, Ninghao Liu, Fan Yang, Rui Chen, Li Li, Xia Hu:
Adaptive Label Smoothing To Regularize Large-Scale Graph Training. SDM 2023: 55-63 - [c34]Qiaoyu Tan, Xin Zhang, Ninghao Liu, Daochen Zha, Li Li, Rui Chen, Soo-Hyun Choi, Xia Hu:
Bring Your Own View: Graph Neural Networks for Link Prediction with Personalized Subgraph Selection. WSDM 2023: 625-633 - [c33]Qiaoyu Tan, Ninghao Liu, Xiao Huang, Soo-Hyun Choi, Li Li, Rui Chen, Xia Hu:
S2GAE: Self-Supervised Graph Autoencoders are Generalizable Learners with Graph Masking. WSDM 2023: 787-795 - [c32]Qing Li, Xiao Huang, Ninghao Liu, Yuxiao Dong, Guansong Pang:
International Workshop on Learning with Knowledge Graphs: Construction, Embedding, and Reasoning. WSDM 2023: 1273-1274 - [i64]Xuansheng Wu, Xinyu He, Tianming Li, Ninghao Liu, Xiaoming Zhai:
Matching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education. CoRR abs/2301.08771 (2023) - [i63]Xuansheng Wu, Zhiyi Zhao, Ninghao Liu:
NoPPA: Non-Parametric Pairwise Attention Random Walk Model for Sentence Representation. CoRR abs/2302.12903 (2023) - [i62]Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Zihao Wu, Lin Zhao, Wei Liu, Ninghao Liu, Sheng Li, Dajiang Zhu, Hongmin Cai, Quanzheng Li, Dinggang Shen, Tianming Liu, Xiang Li:
ChatAug: Leveraging ChatGPT for Text Data Augmentation. CoRR abs/2302.13007 (2023) - [i61]Xuansheng Wu, Kaixiong Zhou, Mingchen Sun, Xin Wang, Ninghao Liu:
A Survey of Graph Prompting Methods: Techniques, Applications, and Challenges. CoRR abs/2303.07275 (2023) - [i60]Ruixiang Tang, Qizhang Feng, Ninghao Liu, Fan Yang, Xia Hu:
Did You Train on My Dataset? Towards Public Dataset Protection with Clean-Label Backdoor Watermarking. CoRR abs/2303.11470 (2023) - [i59]Yucheng Shi, Mengnan Du, Xuansheng Wu, Zihan Guan, Ninghao Liu:
Black-box Backdoor Defense via Zero-shot Image Purification. CoRR abs/2303.12175 (2023) - [i58]Guoyu Lu, Sheng Li, Gengchen Mai, Jin Sun, Dajiang Zhu, Lilong Chai, Haijian Sun, Xianqiao Wang, Haixing Dai, Ninghao Liu, Rui Xu, Daniel Petti, Changying Li, Tianming Liu:
AGI for Agriculture. CoRR abs/2304.06136 (2023) - [i57]Gengchen Mai, Weiming Huang, Jin Sun, Suhang Song, Deepak Mishra, Ninghao Liu, Song Gao, Tianming Liu, Gao Cong, Yingjie Hu, Chris Cundy, Ziyuan Li, Rui Zhu, Ni Lao:
On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence. CoRR abs/2304.06798 (2023) - [i56]Guanchu Wang, Ninghao Liu, Daochen Zha, Xia Ben Hu:
Interactive System-wise Anomaly Detection. CoRR abs/2304.10704 (2023) - [i55]Ehsan Latif, Gengchen Mai, Matthew Nyaaba, Xuansheng Wu, Ninghao Liu, Guoyu Lu, Sheng Li, Tianming Liu, Xiaoming Zhai:
Artificial General Intelligence (AGI) for Education. CoRR abs/2304.12479 (2023) - [i54]Zihan Guan, Mengxuan Hu, Zhongliang Zhou, Jielu Zhang, Sheng Li, Ninghao Liu:
BadSAM: Exploring Security Vulnerabilities of SAM via Backdoor Attacks. CoRR abs/2305.03289 (2023) - [i53]Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, Xia Hu:
DEGREE: Decomposition Based Explanation For Graph Neural Networks. CoRR abs/2305.12895 (2023) - [i52]Ziqi Zhao, Yucheng Shi, Shushan Wu, Fan Yang, Wenzhan Song, Ninghao Liu:
Interpretation of Time-Series Deep Models: A Survey. CoRR abs/2305.14582 (2023) - [i51]Yao Rong, Guanchu Wang, Qizhang Feng, Ninghao Liu, Zirui Liu, Enkelejda Kasneci, Xia Ben Hu:
Efficient GNN Explanation via Learning Removal-based Attribution. CoRR abs/2306.05760 (2023) - [i50]Shuang Zhou, Xiao Huang, Ninghao Liu, Huachi Zhou, Fu-Lai Chung, Long-Kai Huang:
Improving Generalizability of Graph Anomaly Detection Models via Data Augmentation. CoRR abs/2306.10534 (2023) - [i49]Saed Rezayi, Zhengliang Liu, Zihao Wu, Chandra Dhakal, Bao Ge, Haixing Dai, Gengchen Mai, Ninghao Liu, Chen Zhen, Tianming Liu, Sheng Li:
Exploring New Frontiers in Agricultural NLP: Investigating the Potential of Large Language Models for Food Applications. CoRR abs/2306.11892 (2023) - [i48]Xuansheng Wu, Huachi Zhou, Wenlin Yao, Xiao Huang, Ninghao Liu:
Towards Personalized Cold-Start Recommendation with Prompts. CoRR abs/2306.17256 (2023) - [i47]Yucheng Shi, Kaixiong Zhou, Ninghao Liu:
ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning. CoRR abs/2307.01053 (2023) - [i46]Haixing Dai, Lu Zhang, Lin Zhao, Zihao Wu, Zhengliang Liu, David Liu, Xiaowei Yu, Yanjun Lyu, Changying Li, Ninghao Liu, Tianming Liu, Dajiang Zhu:
Hierarchical Semantic Tree Concept Whitening for Interpretable Image Classification. CoRR abs/2307.04343 (2023) - [i45]Zihan Guan, Zihao Wu, Zhengliang Liu, Dufan Wu, Hui Ren, Quanzheng Li, Xiang Li, Ninghao Liu:
CohortGPT: An Enhanced GPT for Participant Recruitment in Clinical Study. CoRR abs/2307.11346 (2023) - [i44]Zihan Guan, Mengnan Du, Ninghao Liu:
XGBD: Explanation-Guided Graph Backdoor Detection. CoRR abs/2308.04406 (2023) - [i43]Yucheng Shi, Yushun Dong, Qiaoyu Tan, Jundong Li, Ninghao Liu:
GiGaMAE: Generalizable Graph Masked Autoencoder via Collaborative Latent Space Reconstruction. CoRR abs/2308.09663 (2023) - [i42]Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Mengnan Du:
Explainability for Large Language Models: A Survey. CoRR abs/2309.01029 (2023) - [i41]Fei Dou, Jin Ye, Geng Yuan, Qin Lu, Wei Niu, Haijian Sun, Le Guan, Guoyu Lu, Gengchen Mai, Ninghao Liu, Jin Lu, Zhengliang Liu, Zihao Wu, Chenjiao Tan, Shaochen Xu, Xianqiao Wang, Guoming Li, Lilong Chai, Sheng Li, Jin Sun, Hongyue Sun, Yunli Shao, Changying Li, Tianming Liu, Wenzhan Song:
Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges. CoRR abs/2309.07438 (2023) - [i40]Zirui He, Huiqi Deng, Haiyan Zhao, Ninghao Liu, Mengnan Du:
Mitigating Shortcuts in Language Models with Soft Label Encoding. CoRR abs/2309.09380 (2023) - [i39]Zhengliang Liu, Peilong Wang, Yiwei Li, Jason Holmes, Peng Shu, Lian Zhang, Chenbin Liu, Ninghao Liu, Dajiang Zhu, Xiang Li, Quanzheng Li, Samir H. Patel, Terence T. Sio, Tianming Liu, Wei Liu:
RadOnc-GPT: A Large Language Model for Radiation Oncology. CoRR abs/2309.10160 (2023) - [i38]Yucheng Shi, Shaochen Xu, Zhengliang Liu, Tianming Liu, Xiang Li, Ninghao Liu:
MedEdit: Model Editing for Medical Question Answering with External Knowledge Bases. CoRR abs/2309.16035 (2023) - [i37]Xuansheng Wu, Wenlin Yao, Jianshu Chen, Xiaoman Pan, Xiaoyang Wang, Ninghao Liu, Dong Yu:
From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning. CoRR abs/2310.00492 (2023) - [i36]Chenxu Zhao, Wei Qian, Yucheng Shi, Mengdi Huai, Ninghao Liu:
Automated Natural Language Explanation of Deep Visual Neurons with Large Models. CoRR abs/2310.10708 (2023) - [i35]Hua Tang, Lu Cheng, Ninghao Liu, Mengnan Du:
A Theoretical Approach to Characterize the Accuracy-Fairness Trade-off Pareto Frontier. CoRR abs/2310.12785 (2023) - [i34]Zhengliang Liu, Yiwei Li, Qian Cao, Junwen Chen, Tianze Yang, Zihao Wu, John Hale, John Gibbs, Khaled Rasheed, Ninghao Liu, Gengchen Mai, Tianming Liu:
Transformation vs Tradition: Artificial General Intelligence (AGI) for Arts and Humanities. CoRR abs/2310.19626 (2023) - [i33]Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, Di Wang:
Improving Faithfulness for Vision Transformers. CoRR abs/2311.17983 (2023) - [i32]Gyeong-Geon Lee, Ehsan Latif, Xuansheng Wu, Ninghao Liu, Xiaoming Zhai:
Applying Large Language Models and Chain-of-Thought for Automatic Scoring. CoRR abs/2312.03748 (2023) - [i31]Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao Liu, Ruobing Wang, Xin Wang:
PokeMQA: Programmable knowledge editing for Multi-hop Question Answering. CoRR abs/2312.15194 (2023) - [i30]Chenjiao Tan, Qian Cao, Yiwei Li, Jielu Zhang, Xiao Yang, Huaqin Zhao, Zihao Wu, Zhengliang Liu, Hao Yang, Nemin Wu, Tao Tang, Xinyue Ye, Lilong Chai, Ninghao Liu, Changying Li, Lan Mu, Tianming Liu, Gengchen Mai:
On the Promises and Challenges of Multimodal Foundation Models for Geographical, Environmental, Agricultural, and Urban Planning Applications. CoRR abs/2312.17016 (2023) - 2022
- [j10]Ruixiang Tang, Ninghao Liu, Fan Yang, Na Zou, Xia Hu:
Defense Against Explanation Manipulation. Frontiers Big Data 5: 704203 (2022) - [j9]Weijie Fu, Meng Wang, Mengnan Du, Ninghao Liu, Shijie Hao, Xia Hu:
Differentiated Explanation of Deep Neural Networks With Skewed Distributions. IEEE Trans. Pattern Anal. Mach. Intell. 44(6): 2909-2922 (2022) - [c31]Yili Wang, Kaixiong Zhou, Rui Miao, Ninghao Liu, Xin Wang:
AdaGCL: Adaptive Subgraph Contrastive Learning to Generalize Large-scale Graph Training. CIKM 2022: 2046-2055 - [c30]Zhou Yang, Ninghao Liu, Xia Ben Hu, Fang Jin:
Tutorial on Deep Learning Interpretation: A Data Perspective. CIKM 2022: 5156-5159 - [c29]Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, Xia Hu:
DEGREE: Decomposition Based Explanation for Graph Neural Networks. ICLR 2022 - [c28]Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Xia Hu:
G-Mixup: Graph Data Augmentation for Graph Classification. ICML 2022: 8230-8248 - [c27]Weihao Song, Yushun Dong, Ninghao Liu, Jundong Li:
GUIDE: Group Equality Informed Individual Fairness in Graph Neural Networks. KDD 2022: 1625-1634 - [c26]Shoujin Wang, Ninghao Liu, Xiuzhen Zhang, Yan Wang, Francesco Ricci, Bamshad Mobasher:
Data Science and Artificial Intelligence for Responsible Recommendations. KDD 2022: 4904-4905 - [c25]Shuang Zhou, Xiao Huang, Ninghao Liu, Qiaoyu Tan, Fu-Lai Chung:
Unseen Anomaly Detection on Networks via Multi-Hypersphere Learning. SDM 2022: 262-270 - [c24]Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li, Xia Hu:
Geometric Graph Representation Learning via Maximizing Rate Reduction. WWW 2022: 1226-1237 - [c23]Yushun Dong, Ninghao Liu, Brian Jalaian, Jundong Li:
EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks. WWW 2022: 1259-1269 - [i29]Qiaoyu Tan, Ninghao Liu, Xiao Huang, Rui Chen, Soo-Hyun Choi, Xia Hu:
MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs. CoRR abs/2201.02534 (2022) - [i28]Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li, Xia Hu:
Geometric Graph Representation Learning via Maximizing Rate Reduction. CoRR abs/2202.06241 (2022) - [i27]Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Xia Hu:
G-Mixup: Graph Data Augmentation for Graph Classification. CoRR abs/2202.07179 (2022) - [i26]Guanchu Wang, Mengnan Du, Ninghao Liu, Na Zou, Xia Ben Hu:
Mitigating Algorithmic Bias with Limited Annotations. CoRR abs/2207.10018 (2022) - [i25]Guanchu Wang, Zirui Liu, Zhimeng Jiang, Ninghao Liu, Na Zou, Xia Ben Hu:
Towards Memory Efficient Training via Dual Activation Precision. CoRR abs/2208.04187 (2022) - [i24]