default search action
Michalis K. Titsias
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c44]Michalis K. Titsias, Alexandre Galashov, Amal Rannen-Triki, Razvan Pascanu, Yee Whye Teh, Jörg Bornschein:
Kalman Filter for Online Classification of Non-Stationary Data. ICLR 2024 - [i26]Amal Rannen-Triki, Jörg Bornschein, Razvan Pascanu, Marcus Hutter, András György, Alexandre Galashov, Yee Whye Teh, Michalis K. Titsias:
Revisiting Dynamic Evaluation: Online Adaptation for Large Language Models. CoRR abs/2403.01518 (2024) - [i25]Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, Michalis K. Titsias:
Simplified and Generalized Masked Diffusion for Discrete Data. CoRR abs/2406.04329 (2024) - [i24]Siran Liu, Petros Dellaportas, Michalis K. Titsias:
Can independent Metropolis beat crude Monte Carlo? CoRR abs/2406.17699 (2024) - 2023
- [j11]Angelos Alexopoulos, Petros Dellaportas, Michalis K. Titsias:
Variance reduction for Metropolis-Hastings samplers. Stat. Comput. 33(1): 6 (2023) - [c43]Michalis K. Titsias:
Optimal Preconditioning and Fisher Adaptive Langevin Sampling. NeurIPS 2023 - [i23]Michalis K. Titsias:
Optimal Preconditioning and Fisher Adaptive Langevin Sampling. CoRR abs/2305.14442 (2023) - [i22]Michalis K. Titsias, Alexandre Galashov, Amal Rannen-Triki, Razvan Pascanu, Yee Whye Teh, Jörg Bornschein:
Kalman Filter for Online Classification of Non-Stationary Data. CoRR abs/2306.08448 (2023) - 2022
- [j10]Michalis K. Titsias, Jakub Sygnowski, Yutian Chen:
Sequential changepoint detection in neural networks with checkpoints. Stat. Comput. 32(2): 26 (2022) - [c42]Michalis K. Titsias, Jiaxin Shi:
Double Control Variates for Gradient Estimation in Discrete Latent Variable Models. AISTATS 2022: 6134-6151 - [c41]Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, Michalis K. Titsias:
Information-theoretic Online Memory Selection for Continual Learning. ICLR 2022 - [c40]Jiaxin Shi, Yuhao Zhou, Jessica Hwang, Michalis K. Titsias, Lester Mackey:
Gradient Estimation with Discrete Stein Operators. NeurIPS 2022 - [i21]Jiaxin Shi, Yuhao Zhou, Jessica Hwang, Michalis K. Titsias, Lester Mackey:
Gradient Estimation with Discrete Stein Operators. CoRR abs/2202.09497 (2022) - [i20]Sotirios Nikoloutsopoulos, Iordanis Koutsopoulos, Michalis K. Titsias:
Personalized Federated Learning with Exact Stochastic Gradient Descent. CoRR abs/2202.09848 (2022) - [i19]Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, Michalis K. Titsias:
Information-theoretic Online Memory Selection for Continual Learning. CoRR abs/2204.04763 (2022) - 2021
- [j9]Aristeidis Panos, Petros Dellaportas, Michalis K. Titsias:
Large scale multi-label learning using Gaussian processes. Mach. Learn. 110(5): 965-987 (2021) - [c39]Marcel Hirt, Michalis K. Titsias, Petros Dellaportas:
Entropy-based adaptive Hamiltonian Monte Carlo. NeurIPS 2021: 28482-28495 - [c38]Francisco J. R. Ruiz, Michalis K. Titsias, A. Taylan Cemgil, Arnaud Doucet:
Unbiased gradient estimation for variational auto-encoders using coupled Markov chains. UAI 2021: 707-717 - [c37]Michalis K. Titsias, Francisco J. R. Ruiz, Sotirios Nikoloutsopoulos, Alexandre Galashov:
Information theoretic meta learning with Gaussian processes. UAI 2021: 1597-1606 - [i18]Michalis K. Titsias, Jiaxin Shi:
Double Control Variates for Gradient Estimation in Discrete Latent Variable Models. CoRR abs/2111.05300 (2021) - 2020
- [c36]Jiaxin Shi, Michalis K. Titsias, Andriy Mnih:
Sparse Orthogonal Variational Inference for Gaussian Processes. AISTATS 2020: 1932-1942 - [c35]Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, Yee Whye Teh:
Functional Regularisation for Continual Learning with Gaussian Processes. ICLR 2020 - [i17]Michalis K. Titsias, Sotirios Nikoloutsopoulos, Alexandre Galashov:
Information Theoretic Meta Learning with Gaussian Processes. CoRR abs/2009.03228 (2020) - [i16]Francisco J. R. Ruiz, Michalis K. Titsias, A. Taylan Cemgil, Arnaud Doucet:
Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled Markov Chains. CoRR abs/2010.01845 (2020) - [i15]Michalis K. Titsias, Jakub Sygnowski, Yutian Chen:
Sequential Changepoint Detection in Neural Networks with Checkpoints. CoRR abs/2010.03053 (2020)
2010 – 2019
- 2019
- [c34]Michalis K. Titsias, Francisco J. R. Ruiz:
Unbiased Implicit Variational Inference. AISTATS 2019: 167-176 - [c33]Kaspar Märtens, Michalis K. Titsias, Christopher Yau:
Augmented Ensemble MCMC sampling in Factorial Hidden Markov Models. AISTATS 2019: 2359-2367 - [c32]Francisco J. R. Ruiz, Michalis K. Titsias:
A Contrastive Divergence for Combining Variational Inference and MCMC. ICML 2019: 5537-5545 - [c31]Michalis K. Titsias, Petros Dellaportas:
Gradient-based Adaptive Markov Chain Monte Carlo. NeurIPS 2019: 15704-15713 - [i14]Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, Yee Whye Teh:
Functional Regularisation for Continual Learning using Gaussian Processes. CoRR abs/1901.11356 (2019) - [i13]Francisco J. R. Ruiz, Michalis K. Titsias:
A Contrastive Divergence for Combining Variational Inference and MCMC. CoRR abs/1905.04062 (2019) - [i12]Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei, Michalis K. Titsias:
Prescribed Generative Adversarial Networks. CoRR abs/1910.04302 (2019) - [i11]Jiaxin Shi, Michalis K. Titsias, Andriy Mnih:
Sparse Orthogonal Variational Inference for Gaussian Processes. CoRR abs/1910.10596 (2019) - [i10]Michalis K. Titsias, Petros Dellaportas:
Gradient-based Adaptive Markov Chain Monte Carlo. CoRR abs/1911.01373 (2019) - 2018
- [c30]Francisco J. R. Ruiz, Michalis K. Titsias, Adji B. Dieng, David M. Blei:
Augment and Reduce: Stochastic Inference for Large Categorical Distributions. ICML 2018: 4400-4409 - [i9]Francisco J. R. Ruiz, Michalis K. Titsias, Adji B. Dieng, David M. Blei:
Augment and Reduce: Stochastic Inference for Large Categorical Distributions. CoRR abs/1802.04220 (2018) - [i8]Aristeidis Panos, Petros Dellaportas, Michalis K. Titsias:
Fully Scalable Gaussian Processes using Subspace Inducing Inputs. CoRR abs/1807.02537 (2018) - [i7]Michalis K. Titsias, Francisco J. R. Ruiz:
Unbiased Implicit Variational Inference. CoRR abs/1808.02078 (2018) - [i6]Michalis K. Titsias, Sotirios Nikoloutsopoulos:
Bayesian Transfer Reinforcement Learning with Prior Knowledge Rules. CoRR abs/1810.00468 (2018) - 2017
- [c29]Tammo Rukat, Christopher C. Holmes, Michalis K. Titsias, Christopher Yau:
Bayesian Boolean Matrix Factorisation. ICML 2017: 2969-2978 - [i5]Tammo Rukat, Christopher C. Holmes, Michalis K. Titsias, Christopher Yau:
Bayesian Boolean Matrix Factorisation. CoRR abs/1702.06166 (2017) - 2016
- [j8]Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:
Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes. J. Mach. Learn. Res. 17: 42:1-42:62 (2016) - [c28]Merkourios Karaliopoulos, Iordanis Koutsopoulos, Michalis K. Titsias:
First learn then earn: optimizing mobile crowdsensing campaigns through data-driven user profiling. MobiHoc 2016: 271-280 - [c27]Francisco J. R. Ruiz, Michalis K. Titsias, David M. Blei:
The Generalized Reparameterization Gradient. NIPS 2016: 460-468 - [c26]Michalis K. Titsias:
One-vs-Each Approximation to Softmax for Scalable Estimation of Probabilities. NIPS 2016: 4161-4169 - [c25]Apostolos N. Adamakos, Michalis K. Titsias:
Short-Term Load Forecasting using a Cluster of Neural Networks for the Greek Energy Market. SETN 2016: 15:1-15:6 - [c24]Francisco J. R. Ruiz, Michalis K. Titsias, David M. Blei:
Overdispersed Black-Box Variational Inference. UAI 2016 - 2015
- [c23]Michalis K. Titsias, Miguel Lázaro-Gredilla:
Local Expectation Gradients for Black Box Variational Inference. NIPS 2015: 2638-2646 - [c22]Rémi Bardenet, Michalis K. Titsias:
Inference for determinantal point processes without spectral knowledge. NIPS 2015: 3393-3401 - 2014
- [j7]Miguel Lázaro-Gredilla, Michalis K. Titsias, Jochem Verrelst, Gustavo Camps-Valls:
Retrieval of Biophysical Parameters With Heteroscedastic Gaussian Processes. IEEE Geosci. Remote. Sens. Lett. 11(4): 838-842 (2014) - [c21]Michalis K. Titsias, Miguel Lázaro-Gredilla:
Doubly Stochastic Variational Bayes for non-Conjugate Inference. ICML 2014: 1971-1979 - [c20]Michalis K. Titsias, Christopher Yau:
Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models. NIPS 2014: 2960-2968 - [i4]Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:
Variational Inference for Uncertainty on the Inputs of Gaussian Process Models. CoRR abs/1409.2287 (2014) - 2013
- [c19]Miguel Lázaro-Gredilla, Michalis K. Titsias, Jochem Verrelst, Gustavo Camps-Valls:
Estimation of vegetation chlorophyll content with Variational Heteroscedastic Gaussian Processes. IGARSS 2013: 3010-3013 - [c18]Michalis K. Titsias, Miguel Lázaro-Gredilla:
Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression. NIPS 2013: 279-287 - [i3]Michalis K. Titsias, Christopher Yau, Christopher C. Holmes:
Statistical Inference in Hidden Markov Models using $k$-segment Constraints. CoRR abs/1311.1189 (2013) - 2012
- [j6]Michalis K. Titsias, Antti Honkela, Neil D. Lawrence, Magnus Rattray:
Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison. BMC Syst. Biol. 6: 53 (2012) - [c17]Andreas C. Damianou, Carl Henrik Ek, Michalis K. Titsias, Neil D. Lawrence:
Manifold Relevance Determination. ICML 2012 - [i2]Andreas C. Damianou, Carl Henrik Ek, Michalis K. Titsias, Neil D. Lawrence:
Manifold Relevance Determination. CoRR abs/1206.4610 (2012) - 2011
- [c16]Miguel Lázaro-Gredilla, Michalis K. Titsias:
Variational Heteroscedastic Gaussian Process Regression. ICML 2011: 841-848 - [c15]Michalis K. Titsias, Miguel Lázaro-Gredilla:
Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning. NIPS 2011: 2339-2347 - [c14]Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:
Variational Gaussian Process Dynamical Systems. NIPS 2011: 2510-2518 - [i1]Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:
Variational Gaussian Process Dynamical Systems. CoRR abs/1107.4985 (2011) - 2010
- [c13]Mauricio A. Álvarez, David Luengo, Michalis K. Titsias, Neil D. Lawrence:
Efficient Multioutput Gaussian Processes through Variational Inducing Kernels. AISTATS 2010: 25-32 - [c12]Michalis K. Titsias, Neil D. Lawrence:
Bayesian Gaussian Process Latent Variable Model. AISTATS 2010: 844-851 - [p1]Neil D. Lawrence, Magnus Rattray, Pei Gao, Michalis K. Titsias:
Gaussian Processes for Missing Species in Biochemical Systems. Learning and Inference in Computational Systems Biology 2010: 231-252
2000 – 2009
- 2009
- [c11]Polyxeni Zacharouli, Michalis K. Titsias, Michalis Vazirgiannis:
Web Page Rank Prediction with PCA and EM Clustering. WAW 2009: 104-115 - [c10]Michalis K. Titsias:
Variational Learning of Inducing Variables in Sparse Gaussian Processes. AISTATS 2009: 567-574 - 2008
- [c9]Michalis K. Titsias, Neil D. Lawrence, Magnus Rattray:
Efficient Sampling for Gaussian Process Inference using Control Variables. NIPS 2008: 1681-1688 - 2007
- [c8]Michalis K. Titsias:
The Infinite Gamma-Poisson Feature Model. NIPS 2007: 1513-1520 - 2006
- [j5]Constantinos Constantinopoulos, Michalis K. Titsias, Aristidis Likas:
Bayesian Feature and Model Selection for Gaussian Mixture Models. IEEE Trans. Pattern Anal. Mach. Intell. 28(6): 1013-1018 (2006) - [c7]Michalis K. Titsias, Christopher K. I. Williams:
Sequential Learning of Layered Models from Video. Toward Category-Level Object Recognition 2006: 577-595 - 2005
- [b1]Michalis K. Titsias:
Unsupervised learning of multiple objects in images. University of Edinburgh, UK, 2005 - [c6]Moray Allan, Michalis K. Titsias, Christopher K. I. Williams:
Fast Learning of Sprites using Invariant Features. BMVC 2005 - [c5]Michalis K. Titsias, Christopher K. I. Williams:
Unsupervised Learning of Multiple Aspects of Moving Objects from Video. Panhellenic Conference on Informatics 2005: 746-756 - 2004
- [j4]Christopher K. I. Williams, Michalis K. Titsias:
Greedy Learning of Multiple Objects in Images Using Robust Statistics and Factorial Learning. Neural Comput. 16(5): 1039-1062 (2004) - [c4]Michalis K. Titsias, Christopher K. I. Williams:
Fast Unsupervised Greedy Learning of Multiple Objects and Parts from Video. CVPR Workshops 2004: 179 - 2003
- [j3]Michalis K. Titsias, Aristidis Likas:
Class Conditional Density Estimation Using Mixtures with Constrained Component Sharing. IEEE Trans. Pattern Anal. Mach. Intell. 25(7): 924-928 (2003) - 2002
- [j2]Michalis K. Titsias, Aristidis Likas:
Mixture of Experts Classification Using a Hierarchical Mixture Model. Neural Comput. 14(9): 2221-2244 (2002) - [c3]Christopher K. I. Williams, Michalis K. Titsias:
Learning About Multiple Objects in Images: Factorial Learning without Factorial Search. NIPS 2002: 1391-1398 - [c2]Constantinos Constantinopoulos, Michalis K. Titsias, Aristidis Likas:
A Bayesian Regularization Method for the Probabilistic RBF Network. SETN 2002: 337-345 - 2001
- [j1]Michalis K. Titsias, Aristidis Likas:
Shared kernel models for class conditional density estimation. IEEE Trans. Neural Networks 12(5): 987-997 (2001) - 2000
- [c1]Michalis K. Titsias, Aristidis Likas:
A Probabilistic RBF Network for Classification. IJCNN (4) 2000: 238-243
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:18 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint