Остановите войну!
for scientists:
default search action
Giuseppe Casalicchio
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c15]Moritz Herrmann, F. Julian D. Lange, Katharina Eggensperger, Giuseppe Casalicchio, Marcel Wever, Matthias Feurer, David Rügamer, Eyke Hüllermeier, Anne-Laure Boulesteix, Bernd Bischl:
Position: Why We Must Rethink Empirical Research in Machine Learning. ICML 2024 - [c14]Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek:
On the Robustness of Global Feature Effect Explanations. ECML/PKDD (2) 2024: 125-142 - [i31]Julian Rodemann, Federico Croppi, Philipp Arens, Yusuf Sale, Julia Herbinger, Bernd Bischl, Eyke Hüllermeier, Thomas Augustin, Conor J. Walsh, Giuseppe Casalicchio:
Explaining Bayesian Optimization by Shapley Values Facilitates Human-AI Collaboration. CoRR abs/2403.04629 (2024) - [i30]Vasilis Gkolemis, Christos Diou, Eirini Ntoutsi, Theodore Dalamagas, Bernd Bischl, Julia Herbinger, Giuseppe Casalicchio:
Effector: A Python package for regional explanations. CoRR abs/2404.02629 (2024) - [i29]Fiona Katharina Ewald, Ludwig Bothmann, Marvin N. Wright, Bernd Bischl, Giuseppe Casalicchio, Gunnar König:
A Guide to Feature Importance Methods for Scientific Inference. CoRR abs/2404.12862 (2024) - [i28]Susanne Dandl, Marc Becker, Bernd Bischl, Giuseppe Casalicchio, Ludwig Bothmann:
mlr3summary: Concise and interpretable summaries for machine learning models. CoRR abs/2404.16899 (2024) - [i27]Moritz Herrmann, F. Julian D. Lange, Katharina Eggensperger, Giuseppe Casalicchio, Marcel Wever, Matthias Feurer, David Rügamer, Eyke Hüllermeier, Anne-Laure Boulesteix, Bernd Bischl:
Position: Why We Must Rethink Empirical Research in Machine Learning. CoRR abs/2405.02200 (2024) - [i26]Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek:
On the Robustness of Global Feature Effect Explanations. CoRR abs/2406.09069 (2024) - [i25]Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek:
Efficient and Accurate Explanation Estimation with Distribution Compression. CoRR abs/2406.18334 (2024) - 2023
- [c13]Julia Herbinger, Susanne Dandl, Fiona Katharina Ewald, Sofia Loibl, Giuseppe Casalicchio:
Leveraging Model-Based Trees as Interpretable Surrogate Models for Model Distillation. ECAI Workshops (1) 2023: 232-249 - [c12]Susanne Dandl, Giuseppe Casalicchio, Bernd Bischl, Ludwig Bothmann:
Interpretable Regional Descriptors: Hyperbox-Based Local Explanations. ECML/PKDD (3) 2023: 479-495 - [c11]Christian A. Scholbeck, Henri Funk, Giuseppe Casalicchio:
Algorithm-Agnostic Feature Attributions for Clustering. xAI (1) 2023: 217-240 - [c10]Christoph Molnar, Timo Freiesleben, Gunnar König, Julia Herbinger, Tim Reisinger, Giuseppe Casalicchio, Marvin N. Wright, Bernd Bischl:
Relating the Partial Dependence Plot and Permutation Feature Importance to the Data Generating Process. xAI (1) 2023: 456-479 - [i24]Susanne Dandl, Andreas Hofheinz, Martin Binder, Bernd Bischl, Giuseppe Casalicchio:
counterfactuals: An R Package for Counterfactual Explanation Methods. CoRR abs/2304.06569 (2023) - [i23]Susanne Dandl, Giuseppe Casalicchio, Bernd Bischl, Ludwig Bothmann:
Interpretable Regional Descriptors: Hyperbox-Based Local Explanations. CoRR abs/2305.02780 (2023) - [i22]Julia Herbinger, Bernd Bischl, Giuseppe Casalicchio:
Decomposing Global Feature Effects Based on Feature Interactions. CoRR abs/2306.00541 (2023) - [i21]Holger Löwe, Christian A. Scholbeck, Christian Heumann, Bernd Bischl, Giuseppe Casalicchio:
fmeffects: An R Package for Forward Marginal Effects. CoRR abs/2310.02008 (2023) - [i20]Julia Herbinger, Susanne Dandl, Fiona Katharina Ewald, Sofia Loibl, Giuseppe Casalicchio:
Leveraging Model-based Trees as Interpretable Surrogate Models for Model Distillation. CoRR abs/2310.03112 (2023) - [i19]Christian A. Scholbeck, Julia Moosbauer, Giuseppe Casalicchio, Hoshin Gupta, Bernd Bischl, Christian Heumann:
Position Paper: Bridging the Gap Between Machine Learning and Sensitivity Analysis. CoRR abs/2312.13234 (2023) - 2022
- [j7]Quay Au, Julia Herbinger, Clemens Stachl, Bernd Bischl, Giuseppe Casalicchio:
Grouped feature importance and combined features effect plot. Data Min. Knowl. Discov. 36(4): 1401-1450 (2022) - [j6]Christina Nießl, Moritz Herrmann, Chiara Wiedemann, Giuseppe Casalicchio, Anne-Laure Boulesteix:
Over-optimism in benchmark studies and the multiplicity of design and analysis options when interpreting their results. WIREs Data Mining Knowl. Discov. 12(2) (2022) - [c9]Julia Herbinger, Bernd Bischl, Giuseppe Casalicchio:
REPID: Regional Effect Plots with implicit Interaction Detection. AISTATS 2022: 10209-10233 - [c8]Ludwig Bothmann, Sven Strickroth, Giuseppe Casalicchio, David Rügamer, Marius Lindauer, Fabian Scheipl, Bernd Bischl:
Developing Open Source Educational Resources for Machine Learning and Data Science. Teaching ML 2022: 1-6 - [i18]Christian A. Scholbeck, Giuseppe Casalicchio, Christoph Molnar, Bernd Bischl, Christian Heumann:
Marginal Effects for Non-Linear Prediction Functions. CoRR abs/2201.08837 (2022) - [i17]Julia Herbinger, Bernd Bischl, Giuseppe Casalicchio:
REPID: Regional Effect Plots with implicit Interaction Detection. CoRR abs/2202.07254 (2022) - [i16]Julia Moosbauer, Giuseppe Casalicchio, Marius Lindauer, Bernd Bischl:
Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution. CoRR abs/2206.05447 (2022) - [i15]Christian A. Scholbeck, Henri Funk, Giuseppe Casalicchio:
Algorithm-Agnostic Interpretations for Clustering. CoRR abs/2209.10578 (2022) - 2021
- [c7]Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel Lang, Rafael Gomes Mantovani, Jan N. van Rijn, Joaquin Vanschoren:
OpenML Benchmarking Suites. NeurIPS Datasets and Benchmarks 2021 - [c6]Julia Moosbauer, Julia Herbinger, Giuseppe Casalicchio, Marius Lindauer, Bernd Bischl:
Explaining Hyperparameter Optimization via Partial Dependence Plots. NeurIPS 2021: 2280-2291 - [i14]Quay Au, Julia Herbinger, Clemens Stachl, Bernd Bischl, Giuseppe Casalicchio:
Grouped Feature Importance and Combined Features Effect Plot. CoRR abs/2104.11688 (2021) - [i13]Gunnar König, Timo Freiesleben, Bernd Bischl, Giuseppe Casalicchio, Moritz Grosse-Wentrup:
Decomposition of Global Feature Importance into Direct and Associative Components (DEDACT). CoRR abs/2106.08086 (2021) - [i12]Ludwig Bothmann, Sven Strickroth, Giuseppe Casalicchio, David Rügamer, Marius Lindauer, Fabian Scheipl, Bernd Bischl:
Developing Open Source Educational Resources for Machine Learning and Data Science. CoRR abs/2107.14330 (2021) - [i11]Christoph Molnar, Timo Freiesleben, Gunnar König, Giuseppe Casalicchio, Marvin N. Wright, Bernd Bischl:
Relating the Partial Dependence Plot and Permutation Feature Importance to the Data Generating Process. CoRR abs/2109.01433 (2021) - [i10]Julia Moosbauer, Julia Herbinger, Giuseppe Casalicchio, Marius Lindauer, Bernd Bischl:
Explaining Hyperparameter Optimization via Partial Dependence Plots. CoRR abs/2111.04820 (2021) - 2020
- [c5]Christoph Molnar, Gunnar König, Julia Herbinger, Timo Freiesleben, Susanne Dandl, Christian A. Scholbeck, Giuseppe Casalicchio, Moritz Grosse-Wentrup, Bernd Bischl:
General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models. xxAI@ICML 2020: 39-68 - [c4]Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl:
Interpretable Machine Learning - A Brief History, State-of-the-Art and Challenges. PKDD/ECML Workshops 2020: 417-431 - [i9]Christoph Molnar, Gunnar König, Bernd Bischl, Giuseppe Casalicchio:
Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional Subgroup Approach. CoRR abs/2006.04628 (2020) - [i8]Christoph Molnar, Gunnar König, Julia Herbinger, Timo Freiesleben, Susanne Dandl, Christian A. Scholbeck, Giuseppe Casalicchio, Moritz Grosse-Wentrup, Bernd Bischl:
Pitfalls to Avoid when Interpreting Machine Learning Models. CoRR abs/2007.04131 (2020) - [i7]Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl:
Interpretable Machine Learning - A Brief History, State-of-the-Art and Challenges. CoRR abs/2010.09337 (2020)
2010 – 2019
- 2019
- [b1]Giuseppe Casalicchio:
On benchmark experiments and visualization methods for the evaluation and interpretation of machine learning models. Ludwig Maximilian University of Munich, Germany, 2019 - [j5]Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Dominik Kirchhoff, Pascal Kerschke, Benjamin Hofner, Heidi Seibold, Joaquin Vanschoren, Bernd Bischl:
OpenML: An R package to connect to the machine learning platform OpenML. Comput. Stat. 34(3): 977-991 (2019) - [j4]Michel Lang, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff, Bernd Bischl:
mlr3: A modern object-oriented machine learning framework in R. J. Open Source Softw. 4(44): 1903 (2019) - [c3]Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl:
Quantifying Model Complexity via Functional Decomposition for Better Post-hoc Interpretability. PKDD/ECML Workshops (1) 2019: 193-204 - [c2]Christian A. Scholbeck, Christoph Molnar, Christian Heumann, Bernd Bischl, Giuseppe Casalicchio:
Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model-Agnostic Interpretations. PKDD/ECML Workshops (1) 2019: 205-216 - [i6]Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl:
Quantifying Interpretability of Arbitrary Machine Learning Models Through Functional Decomposition. CoRR abs/1904.03867 (2019) - [i5]Quay Au, Daniel Schalk, Giuseppe Casalicchio, Ramona Schödel, Clemens Stachl, Bernd Bischl:
Component-Wise Boosting of Targets for Multi-Output Prediction. CoRR abs/1904.03943 (2019) - [i4]Christian A. Scholbeck, Christoph Molnar, Christian Heumann, Bernd Bischl, Giuseppe Casalicchio:
Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model Agnostic Interpretations. CoRR abs/1904.03959 (2019) - 2018
- [j3]Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl:
iml: An R package for Interpretable Machine Learning. J. Open Source Softw. 3(26): 786 (2018) - [c1]Giuseppe Casalicchio, Christoph Molnar, Bernd Bischl:
Visualizing the Feature Importance for Black Box Models. ECML/PKDD (1) 2018: 655-670 - [i3]Giuseppe Casalicchio, Christoph Molnar, Bernd Bischl:
Visualizing the Feature Importance for Black Box Models. CoRR abs/1804.06620 (2018) - 2017
- [j2]Philipp Probst, Quay Au, Giuseppe Casalicchio, Clemens Stachl, Bernd Bischl:
Multilabel Classification with R Package mlr. R J. 9(1): 352 (2017) - [i2]Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Dominik Kirchhoff, Pascal Kerschke, Benjamin Hofner, Heidi Seibold, Joaquin Vanschoren, Bernd Bischl:
OpenML: An R Package to Connect to the Networked Machine Learning Platform OpenML. CoRR abs/1701.01293 (2017) - [i1]Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael Gomes Mantovani, Jan N. van Rijn, Joaquin Vanschoren:
OpenML Benchmarking Suites and the OpenML100. CoRR abs/1708.03731 (2017) - 2016
- [j1]Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus, Giuseppe Casalicchio, Zachary M. Jones:
mlr: Machine Learning in R. J. Mach. Learn. Res. 17: 170:1-170:5 (2016)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-09 00:17 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint