


Остановите войну!
for scientists:


default search action
Su Ruan
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j60]Tongxue Zhou, Su Ruan, Haigen Hu:
A literature survey of MR-based brain tumor segmentation with missing modalities. Comput. Medical Imaging Graph. 104: 102167 (2023) - [j59]Ling Huang
, Su Ruan, Thierry Denoeux
:
Application of belief functions to medical image segmentation: A review. Inf. Fusion 91: 737-756 (2023) - 2022
- [j58]Amine Amyar, Romain Modzelewski
, Pierre Vera, Vincent Morard, Su Ruan
:
Multi-task multi-scale learning for outcome prediction in 3D PET images. Comput. Biol. Medicine 151(Part): 106208 (2022) - [j57]Zhengshan Huang, Yu Guo
, Ning Zhang, Xian Huang, Pierre Decazes, Stéphanie Becker, Su Ruan
:
Multi-scale feature similarity-based weakly supervised lymphoma segmentation in PET/CT images. Comput. Biol. Medicine 151(Part): 106230 (2022) - [j56]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan
:
A Quantitative Comparison between Shannon and Tsallis-Havrda-Charvat Entropies Applied to Cancer Outcome Prediction. Entropy 24(4): 436 (2022) - [j55]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Alexandre Huat, Sébastien Thureau
, David Pasquier
, Isabelle Gardin, Romain Modzelewski, David Gibon, Juliette Thariat, Vincent Grégoire, Pierre Vera, Su Ruan
:
Correction: Brochet et al. A Quantitative Comparison between Shannon and Tsallis-Havrda-Charvat Entropies Applied to Cancer Outcome Prediction. Entropy 2022, 24, 436. Entropy 24(5): 685 (2022) - [j54]Ling Huang
, Su Ruan, Pierre Decazes, Thierry Denoeux
:
Lymphoma segmentation from 3D PET-CT images using a deep evidential network. Int. J. Approx. Reason. 149: 39-60 (2022) - [j53]Amine Amyar, Romain Modzelewski, Pierre Vera, Vincent Morard
, Su Ruan
:
Weakly Supervised Tumor Detection in PET Using Class Response for Treatment Outcome Prediction. J. Imaging 8(5): 130 (2022) - [j52]Tongxue Zhou, Su Ruan, Pierre Vera, Stéphane Canu:
A Tri-Attention fusion guided multi-modal segmentation network. Pattern Recognit. 124: 108417 (2022) - [j51]Haigen Hu, Leizhao Shen, Qiu Guan, Xiaoxin Li, Qianwei Zhou, Su Ruan:
Deep co-supervision and attention fusion strategy for automatic COVID-19 lung infection segmentation on CT images. Pattern Recognit. 124: 108452 (2022) - [j50]Tongxue Zhou
, Pierre Vera, Stéphane Canu, Su Ruan
:
Missing Data Imputation via Conditional Generator and Correlation Learning for Multimodal Brain Tumor Segmentation. Pattern Recognit. Lett. 158: 125-132 (2022) - [c85]Tongxue Zhou, Alexandra Noeuveglise, Fethi Ghazouani, Romain Modzelewski, Sébastien Thureau, Maxime Fontanilles, Su Ruan:
Prediction of Brain Tumor Recurrence Location Based on Kullback-Leibler Divergence and Nonlinear Correlation Learning. ICPR 2022: 4414-4419 - [c84]Vincent Andrearczyk, Valentin Oreiller, Moamen Abobakr, Azadeh Akhavanallaf, Panagiotis Balermpas, Sarah Boughdad, Leo Capriotti, Joël Castelli, Catherine Cheze Le Rest, Pierre Decazes, Ricardo Correia, Dina El-Habashy, Hesham Elhalawani, Clifton D. Fuller, Mario Jreige, Yomna Khamis, Agustina La Greca Saint-Esteven, Abdallah Mohamed, Mohamed Naser, John O. Prior, Su Ruan, Stephanie Tanadini-Lang, Olena Tankyevych, Yazdan Salimi, Martin Vallières, Pierre Vera, Dimitris Visvikis, Kareem Wahid, Habib Zaidi, Mathieu Hatt, Adrien Depeursinge:
Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT. HECKTOR@MICCAI 2022: 1-30 - [c83]Ling Huang
, Thierry Denoeux
, Pierre Vera, Su Ruan:
Evidence Fusion with Contextual Discounting for Multi-modality Medical Image Segmentation. MICCAI (5) 2022: 401-411 - [i25]Ling Huang, Su Ruan, Pierre Decazes, Thierry Denoeux:
Lymphoma segmentation from 3D PET-CT images using a deep evidential network. CoRR abs/2201.13078 (2022) - [i24]Amine Amyar, Romain Modzelewski, Pierre Vera, Vincent Morard, Su Ruan:
Multi-Task Multi-Scale Learning For Outcome Prediction in 3D PET Images. CoRR abs/2203.00641 (2022) - [i23]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan:
A Quantitative Comparison between Shannon and Tsallis Havrda Charvat Entropies Applied to Cancer Outcome Prediction. CoRR abs/2203.11943 (2022) - [i22]Ling Huang, Su Ruan:
Application of belief functions to medical image segmentation: A review. CoRR abs/2205.01733 (2022) - [i21]Zong Fan, Xiaohui Zhang
, Jacob A. Gasienica, Jennifer Potts, Su Ruan, Wade Thorstad, Hiram Gay, Xiaowei Wang, Hua Li:
A novel adversarial learning strategy for medical image classification. CoRR abs/2206.11501 (2022) - [i20]Ling Huang, Thierry Denoeux
, Pierre Vera, Su Ruan:
Evidence fusion with contextual discounting for multi-modality medical image segmentation. CoRR abs/2206.11739 (2022) - 2021
- [j49]Shenghua He, Chunfeng Lian, Wade Thorstad, Hiram Gay, Yujie Zhao, Su Ruan, Xiaowei Wang
, Hua Li
:
A novel systematic approach for cancer treatment prognosis and its applications in oropharyngeal cancer with microRNA biomarkers. Bioinform. 37(19): 3106-3114 (2021) - [j48]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor segmentation with missing MR modalities. Neurocomputing 466: 102-112 (2021) - [j47]Tongxue Zhou
, Stéphane Canu, Su Ruan
:
Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism. Int. J. Imaging Syst. Technol. 31(1): 16-27 (2021) - [j46]Tongxue Zhou
, Stéphane Canu
, Pierre Vera, Su Ruan
:
Latent Correlation Representation Learning for Brain Tumor Segmentation With Missing MRI Modalities. IEEE Trans. Image Process. 30: 4263-4274 (2021) - [c82]Ling Huang
, Su Ruan, Pierre Decazes, Thierry Denoeux
:
Evidential Segmentation of 3D PET/CT Images. BELIEF 2021: 159-167 - [c81]Ling Huang
, Su Ruan, Thierry Denoeux
:
Covid-19 Classification with Deep Neural Network and Belief Functions. BIBE 2021: 3:1-3:4 - [c80]Ling Huang
, Su Ruan, Thierry Denoeux
:
Belief Function-Based Semi-Supervised Learning For Brain Tumor Segmentation. ISBI 2021: 160-164 - [c79]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
A Dual Supervision Guided Attentional Network for Multimodal MR Brain Tumor Segmentation. MICAD 2021: 3-11 - [c78]Ling Huang
, Thierry Denoeux
, David Tonnelet, Pierre Decazes, Su Ruan:
Deep PET/CT Fusion with Dempster-Shafer Theory for Lymphoma Segmentation. MLMI@MICCAI 2021: 30-39 - [i19]Ling Huang
, Su Ruan, Thierry Denoeux:
Covid-19 classification with deep neural network and belief functions. CoRR abs/2101.06958 (2021) - [i18]Ling Huang
, Su Ruan, Thierry Denoeux:
Belief function-based semi-supervised learning for brain tumor segmentation. CoRR abs/2102.00097 (2021) - [i17]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
3D Medical Multi-modal Segmentation Network Guided by Multi-source Correlation Constraint. CoRR abs/2102.03111 (2021) - [i16]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Sébastien Bougleux, Mathieu Salaün, Su Ruan:
Deep learning using Havrda-Charvat entropy for classification of pulmonary endomicroscopy. CoRR abs/2104.05450 (2021) - [i15]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Latent Correlation Representation Learning for Brain Tumor Segmentation with Missing MRI Modalities. CoRR abs/2104.06231 (2021) - [i14]Ling Huang
, Su Ruan, Pierre Decazes, Thierry Denoeux:
Evidential segmentation of 3D PET/CT images. CoRR abs/2104.13293 (2021) - [i13]Ling Huang
, Thierry Denoeux, David Tonnelet, Pierre Decazes, Su Ruan:
Deep PET/CT fusion with Dempster-Shafer theory for lymphoma segmentation. CoRR abs/2108.05422 (2021) - [i12]Fereshteh Yousefirizi, Pierre Decazes, Amine Amyar, Su Ruan, Babak Saboury, Arman Rahmim:
AI-Based Detection, Classification and Prediction/Prognosis in Medical Imaging: Towards Radiophenomics. CoRR abs/2110.10332 (2021) - [i11]Tongxue Zhou, Su Ruan, Pierre Vera, Stéphane Canu:
A Tri-attention Fusion Guided Multi-modal Segmentation Network. CoRR abs/2111.01623 (2021) - [i10]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Feature-enhanced Generation and Multi-modality Fusion based Deep Neural Network for Brain Tumor Segmentation with Missing MR Modalities. CoRR abs/2111.04735 (2021) - [i9]Haigen Hu, Leizhao Shen, Qiu Guan, Xiaoxin Li, Qianwei Zhou, Su Ruan:
Deep Co-supervision and Attention Fusion Strategy for Automatic COVID-19 Lung Infection Segmentation on CT Images. CoRR abs/2112.10368 (2021) - 2020
- [j45]Amine Amyar, Romain Modzelewski
, Hua Li, Su Ruan:
Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Comput. Biol. Medicine 126: 104037 (2020) - [j44]Tongxue Zhou, Stéphane Canu, Su Ruan:
Fusion based on attention mechanism and context constraint for multi-modal brain tumor segmentation. Comput. Medical Imaging Graph. 86: 101811 (2020) - [j43]Yuan Liu
, Stéphane Canu, Paul Honeine
, Su Ruan
:
Incoherent dictionary learning via mixed-integer programming and hybrid augmented Lagrangian. Digit. Signal Process. 101: 102703 (2020) - [j42]Dong Nie
, Roger Trullo, Jun Lian
, Li Wang
, Caroline Petitjean
, Su Ruan
, Qian Wang, Dinggang Shen
:
Corrections to "Medical Image Synthesis With Deep Convolutional Adversarial Networks". IEEE Trans. Biomed. Eng. 67(9): 2706 (2020) - [c77]Amine Amyar, Su Ruan, Pierre Vera, Pierre Decazes, Romain Modzelewski:
RADIOGAN: Deep Convolutional Conditional Generative Adversarial Network to Generate PET Images. ICBRA 2020: 28-33 - [c76]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
3D Medical Multi-modal Segmentation Network Guided by Multi-source Correlation Constraint. ICPR 2020: 10243-10250 - [c75]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Sébastien Bougleux
, Mathieu Salaün, Su Ruan:
Deep learning based automatic detection of uninformative images in pulmonary optical endomicroscopy. IPTA 2020: 1-5 - [c74]Zoé Lambert, Caroline Petitjean, Bernard Dubray, Su Ruan:
SegTHOR: Segmentation of Thoracic Organs at Risk in CT images. IPTA 2020: 1-6 - [c73]Yu Guo, Pierre Decazes, Stéphanie Becker, Hua Li, Su Ruan:
Deep Disentangled Representation Learning of Pet Images for Lymphoma Outcome Prediction. ISBI 2020: 1-4 - [c72]Tongxue Zhou
, Su Ruan, Yu Guo, Stéphane Canu:
A Multi-Modality Fusion Network Based on Attention Mechanism for Brain Tumor Segmentation. ISBI 2020: 377-380 - [c71]Haigen Hu, Leizhao Shen, Tongxue Zhou
, Pierre Decazes, Pierre Vera, Su Ruan:
Lymphoma Segmentation in PET Images Based on Multi-view and Conv3D Fusion Strategy. ISBI 2020: 1197-1200 - [c70]Tongxue Zhou
, Stéphane Canu, Pierre Vera, Su Ruan:
Brain Tumor Segmentation with Missing Modalities via Latent Multi-source Correlation Representation. MICCAI (4) 2020: 533-541 - [i8]Amine Amyar, Romain Modzelewski, Pierre Vera, Vincent Morard, Su Ruan:
Weakly Supervised PET Tumor Detection Using Class Response. CoRR abs/2003.08337 (2020) - [i7]Amine Amyar, Su Ruan, Pierre Vera, Pierre Decazes, Romain Modzelewski:
RADIOGAN: Deep Convolutional Conditional Generative adversarial Network To Generate PET Images. CoRR abs/2003.08663 (2020) - [i6]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Brain tumor segmentation with missing modalities via latent multi-source correlation representation. CoRR abs/2003.08870 (2020) - [i5]Tongxue Zhou, Stéphane Canu, Su Ruan:
An automatic COVID-19 CT segmentation network using spatial and channel attention mechanism. CoRR abs/2004.06673 (2020) - [i4]Tongxue Zhou, Su Ruan, Stéphane Canu:
A review: Deep learning for medical image segmentation using multi-modality fusion. CoRR abs/2004.10664 (2020)
2010 – 2019
- 2019
- [j41]Tongxue Zhou
, Su Ruan, Stéphane Canu:
A review: Deep learning for medical image segmentation using multi-modality fusion. Array 3-4: 100004 (2019) - [j40]Haigen Hu
, Pierre Decazes, Pierre Vera, Hua Li, Su Ruan
:
Detection and segmentation of lymphomas in 3D PET images via clustering with entropy-based optimization strategy. Int. J. Comput. Assist. Radiol. Surg. 14(10): 1715-1724 (2019) - [j39]Fan Wang, Chunfeng Lian, Pierre Vera, Su Ruan
:
Adaptive kernelized evidential clustering for automatic 3D tumor segmentation in FDG-PET images. Multim. Syst. 25(2): 127-133 (2019) - [j38]Yuan Liu, Stéphane Canu
, Paul Honeine
, Su Ruan
:
Mixed Integer Programming For Sparse Coding: Application to Image Denoising. IEEE Trans. Computational Imaging 5(3): 354-365 (2019) - [j37]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Joint Tumor Segmentation in PET-CT Images Using Co-Clustering and Fusion Based on Belief Functions. IEEE Trans. Image Process. 28(2): 755-766 (2019) - [c69]Haigen Hu, Chao Du, Qiu Guan, Qianwei Zhou, Pierre Vera, Su Ruan:
A Background-based Data Enhancement Method for Lymphoma Segmentation in 3D PET Images. BIBM 2019: 1194-1196 - [c68]Haigen Hu, Chao Du, Pierre Decazes, Pierre Vera, Su Ruan:
A Prior Knowledge Intergrated Scheme for Detection and Segmentation of Lymphomas in 3D PET Images based on DBSCAN and GAs. BIBM 2019: 2413-2420 - [c67]Haigen Hu, Pierre Decazes, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan
:
Gaussian-based Spatial Hybrid Distances for Detection and Segmentation of Lymphoid Lesions in 3D PET Images. CISP-BMEI 2019: 1-5 - [c66]Tongxue Zhou
, Su Ruan
, Haigen Hu, Stéphane Canu:
Deep Learning Model Integrating Dilated Convolution and Deep Supervision for Brain Tumor Segmentation in Multi-parametric MRI. MLMI@MICCAI 2019: 574-582 - [e1]Caroline Petitjean, Su Ruan, Zoé Lambert, Bernard Dubray:
Proceedings of the 2019 Challenge on Segmentation of THoracic Organs at Risk in CT Images, SegTHOR@ISBI 2019, April 8, 2019. CEUR Workshop Proceedings 2349, CEUR-WS.org 2019 [contents] - [i3]Zoé Lambert, Caroline Petitjean, Bernard Dubray, Su Ruan:
SegTHOR: Segmentation of Thoracic Organs at Risk in CT images. CoRR abs/1912.05950 (2019) - 2018
- [j36]Yuntao Yu, Pierre Decazes
, Jérôme Lapuyade-Lahorgue, Isabelle Gardin
, Pierre Vera, Su Ruan
:
Semi-automatic lymphoma detection and segmentation using fully conditional random fields. Comput. Medical Imaging Graph. 70: 1-7 (2018) - [j35]Jian Wu, Thomas R. Mazur, Su Ruan
, Chunfeng Lian, Nalini Daniel, Hilary Lashmett, Laura Ochoa, Imran Zoberi, Mark A. Anastasio, H. Michael Gach, Sasa Mutic, Maria Thomas, Hua Li:
A deep Boltzmann machine-driven level set method for heart motion tracking using cine MRI images. Medical Image Anal. 47: 68-80 (2018) - [j34]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Spatial Evidential Clustering With Adaptive Distance Metric for Tumor Segmentation in FDG-PET Images. IEEE Trans. Biomed. Eng. 65(1): 21-30 (2018) - [j33]Dong Nie
, Roger Trullo, Jun Lian, Li Wang
, Caroline Petitjean, Su Ruan
, Qian Wang, Dinggang Shen
:
Medical Image Synthesis with Deep Convolutional Adversarial Networks. IEEE Trans. Biomed. Eng. 65(12): 2720-2730 (2018) - [c65]Naouel Boughattas, Maxime Berar, Kamel Hamrouni, Su Ruan
:
Feature selection and classification using multiple kernel learning for brain tumor segmentation. ATSIP 2018: 1-5 - [c64]Jierui Zha, Pierre Decazes, Jérôme Lapuyade, Abderrahim Elmoataz, Su Ruan
:
3D lymphoma detection in PET-CT images with supervoxel and CRFs. IPTA 2018: 1-5 - [c63]Chunfeng Lian, Hua Li, Pierre Vera, Su Ruan
:
Unsupervised co-segmentation of tumor in PET-CT images using belief functions based fusion. ISBI 2018: 220-223 - [c62]Jian Wu, Su Ruan
, Chunfeng Lian, Sasa Mutic, Mark A. Anastasio, Hua Li:
Active learning with noise modeling for medical image annotation. ISBI 2018: 298-301 - [c61]Jian Wu, Su Ruan
, Thomas R. Mazur, Nalini Daniel, Hilary Lashmett, Laura Ochoa, Imran Zoberi, Chunfeng Lian, H. Michael Gach, Sasa Mutic, Maria Thomas, Mark A. Anastasio, Hua Li:
Heart motion tracking on cine MRI based on a deep Boltzmann machine-driven level set method. ISBI 2018: 1153-1156 - [c60]Yuan Liu, Stéphane Canu
, Paul Honeine
, Su Ruan
:
K-SVD with a Real ℓ0 Optimization: Application to Image Denoising. MLSP 2018: 1-6 - 2017
- [j32]Paul Desbordes, Su Ruan
, Romain Modzelewski, Vauclin Sébastien, Pierre Vera, Isabelle Gardin
:
Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier. Comput. Medical Imaging Graph. 60: 42-49 (2017) - [j31]Jérôme Lapuyade-Lahorgue, Jing-Hao Xue
, Su Ruan
:
Segmenting Multi-Source Images Using Hidden Markov Fields With Copula-Based Multivariate Statistical Distributions. IEEE Trans. Image Process. 26(7): 3187-3195 (2017) - [c59]Chunfeng Lian, Su Ruan
, Thierry Denoeux
, Yu Guo, Pierre Vera:
Accurate tumor segmentation in FDG-PET images with guidance of complementary CT images. ICIP 2017: 4447-4451 - [c58]Roger Trullo, Caroline Petitjean, Dong Nie, Dinggang Shen, Su Ruan
:
Fully automated esophagus segmentation with a hierarchical deep learning approach. ICSIPA 2017: 503-506 - [c57]Roger Trullo, Caroline Petitjean, Su Ruan
, Bernard Dubray, Dong Nie, Dinggang Shen:
Segmentation of Organs at Risk in thoracic CT images using a SharpMask architecture and Conditional Random Fields. ISBI 2017: 1003-1006 - [c56]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Tumor delineation in FDG-PET images using a new evidential clustering algorithm with spatial regularization and adaptive distance metric. ISBI 2017: 1177-1180 - [c55]Yuntao Yu, Pierre Decazes, Isabelle Gardin, Pierre Vera, Su Ruan
:
3D Lymphoma Segmentation in PET/CT Images Based on Fully Connected CRFs. CMMI/RAMBO/SWITCH@MICCAI 2017: 3-12 - [c54]Roger Trullo, Caroline Petitjean, Dong Nie, Dinggang Shen, Su Ruan
:
Joint Segmentation of Multiple Thoracic Organs in CT Images with Two Collaborative Deep Architectures. DLMIA/ML-CDS@MICCAI 2017: 21-29 - [c53]Dong Nie, Roger Trullo, Jun Lian, Caroline Petitjean, Su Ruan
, Qian Wang
, Dinggang Shen:
Medical Image Synthesis with Context-Aware Generative Adversarial Networks. MICCAI (3) 2017: 417-425 - [i2]Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan:
Une véritable approche $\ell_0$ pour l'apprentissage de dictionnaire. CoRR abs/1709.05937 (2017) - 2016
- [j30]Damien Grosgeorge, Caroline Petitjean, Su Ruan
:
Multilabel statistical shape prior for image segmentation. IET Image Process. 10(10): 710-716 (2016) - [j29]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Fabrice Jardin, Pierre Vera:
Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Medical Image Anal. 32: 257-268 (2016) - [j28]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
:
Dissimilarity Metric Learning in the Belief Function Framework. IEEE Trans. Fuzzy Syst. 24(6): 1555-1564 (2016) - [c52]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
:
Joint Feature Transformation and Selection Based on Dempster-Shafer Theory. IPMU (1) 2016: 253-261 - [c51]Kevin Gosse, Stéphanie Jehan-Besson
, François Lecellier, Su Ruan
:
Comparison of 2D and 3D region-based deformable models and random walker methods for PET segmentation. IPTA 2016: 1-7 - [c50]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Robust Cancer Treatment Outcome Prediction Dealing with Small-Sized and Imbalanced Data from FDG-PET Images. MICCAI (2) 2016: 61-69 - [i1]Dong Nie, Roger Trullo, Caroline Petitjean, Su Ruan, Dinggang Shen:
Medical Image Synthesis with Context-Aware Generative Adversarial Networks. CoRR abs/1612.05362 (2016) - 2015
- [j27]Hongmei Mi, Caroline Petitjean
, Bernard Dubray, Pierre Vera, Su Ruan
:
Robust feature selection to predict tumor treatment outcome. Artif. Intell. Medicine 64(3): 195-204 (2015) - [j26]Caroline Petitjean
, Maria A. Zuluaga
, Wenjia Bai
, Jean-Nicolas Dacher, Damien Grosgeorge, Jérôme Caudron, Su Ruan
, Ismail Ben Ayed, Manuel Jorge Cardoso
, Hsiang-Chou Chen, Daniel Jimenez-Carretero
, María J. Ledesma-Carbayo
, Christos Davatzikos
, Jimit Doshi, Güray Erus, Oskar M. O. Maier, Cyrus M. S. Nambakhsh, Yangming Ou
, Sébastien Ourselin
, Chun-Wei Peng, Nicholas S. Peters, Terry M. Peters, Martin Rajchl, Daniel Rueckert, Andrés Santos
, Wenzhe Shi, Ching-Wei Wang
, Haiyan Wang, Jing Yuan:
Right ventricle segmentation from cardiac MRI: A collation study. Medical Image Anal. 19(1): 187-202 (2015) - [j25]Hongmei Mi, Caroline Petitjean
, Pierre Vera, Su Ruan
:
Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images. Medical Image Anal. 23(1): 84-91 (2015) - [j24]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
:
An evidential classifier based on feature selection and two-step classification strategy. Pattern Recognit. 48(7): 2318-2327 (2015) - [c49]Saïd Ettaïeb, Kamel Hamrouni, Su Ruan
:
Modelling and Tracking of Deformable Structures in Medical Images. ICIG (2) 2015: 475-490 - [c48]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Pierre Vera:
Outcome prediction in tumour therapy based on Dempster-Shafer theory. ISBI 2015: 63-66 - [c47]Maxime Guinin, Su Ruan
, Lamyaa Nkhali, Bernard Dubray, Laurent Massoptier, Isabelle Gardin:
Segmentation of pelvic organs at risk using superpixels and graph diffusion in prostate radiotherapy. ISBI 2015: 1564-1567 - [c46]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Dempster-Shafer Theory Based Feature Selection with Sparse Constraint for Outcome Prediction in Cancer Therapy. MICCAI (3) 2015: 695-702 - 2014
- [j23]Ines Ketata, Lamia Sallemi, Frédéric Morain-Nicolier, Mohamed Ben Slima, Alexandre Cochet, Khalil Chtourou, Su Ruan
, Ahmed Ben Hamida:
Factor analysis-based approach for early uptake automatic quantification of breast cancer by 18F-FDG PET images sequence. Biomed. Signal Process. Control. 9: 19-31 (2014) - [j22]D. P. Onoma, Su Ruan
, Sébastien Thureau, Lamyaa Nkhali, Romain Modzelewski, G. A. Monnehan, Pierre Vera, Isabelle Gardin
:
Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm. Comput. Medical Imaging Graph. 38(8): 753-763 (2014) - [j21]Benoît Lelandais
, Isabelle Gardin, Laurent Mouchard, Pierre Vera, Su Ruan
:
Dealing with uncertainty and imprecision in image segmentation using belief function theory. Int. J. Approx. Reason. 55(1): 376-387 (2014) - [j20]Pierre Buyssens, Isabelle Gardin, Su Ruan
, Abderrahim Elmoataz:
Eikonal-based region growing for efficient clustering. Image Vis. Comput. 32(12): 1045-1054 (2014) - [j19]Benoît Lelandais
, Su Ruan
, Thierry Denoeux
, Pierre Vera, Isabelle Gardin
:
Fusion of multi-tracer PET images for dose painting. Medical Image Anal. 18(7): 1247-1259 (2014) - [j18]Hongmei Mi, Caroline Petitjean
, Bernard Dubray, Pierre Vera, Su Ruan
:
Prediction of Lung Tumor Evolution During Radiotherapy in Individual Patients With PET. IEEE Trans. Medical Imaging 33(4): 995-1003 (2014) - [c45]Ines Ketata, Lamia Sallemi, Mohamed Ben Slima, Ahmed Ben Hamida, Frédéric Morain-Nicolier, Su Ruan
, Alexandre Cochet, Khalil Chtourou:
Advanced approach for PET breast cancer segmentation based on FAMIS methodology. ATSIP 2014: 219-224 - [c44]Naouel Boughattas, Maxime Berar, Kamel Hamrouni, Su Ruan
:
Brain tumor segmentation from multiple MRI sequences using multiple kernel learning. ICIP 2014: 1887-1891 - [c43]Saïd Ettaïeb, Kamel Hamrouni, Su Ruan
:
Myocardium segmentation using a priori knowledge of shape and a spatial relation. ICMCS 2014: 380-384 - [c42]Paul Desbordes, Caroline Petitjean
, Su Ruan
:
3D automated lymphoma segmentation in PET images based on cellular automata. IPTA 2014: 23-28