BibTeX records: Xuejian Liang

download as .bib file

@inproceedings{DBLP:conf/ifip12/QuYLL18,
  author    = {Haicheng Qu and
               Xiu Yin and
               Xuejian Liang and
               Wanjun Liu},
  editor    = {Zhongzhi Shi and
               Cyriel M. A. Pennartz and
               Tiejun Huang},
  title     = {Parallel Dimensionality-Varied Convolutional Neural Network for Hyperspectral
               Image Classification},
  booktitle = {Intelligence Science {II} - Third {IFIP} {TC12} International Conference,
               {ICIS} 2018, Beijing, China, November 2-5, 2018, Proceedings},
  series    = {{IFIP} Advances in Information and Communication Technology},
  volume    = {539},
  pages     = {302--309},
  publisher = {Springer},
  year      = {2018},
  url       = {https://doi.org/10.1007/978-3-030-01313-4\_32},
  doi       = {10.1007/978-3-030-01313-4\_32},
  timestamp = {Wed, 08 Jul 2020 08:43:56 +0200},
  biburl    = {https://dblp.org/rec/conf/ifip12/QuYLL18.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/whispers/LiangLZYQ18,
  author    = {Xuejian Liang and
               Wanjun Liu and
               Ye Zhang and
               Jie Yu and
               Haicheng Qu},
  title     = {Dimensionality-Varied Convolutional Neural Network for Hyperspectral
               Image Classification With Small-Sized Labeled Samples},
  booktitle = {9th Workshop on Hyperspectral Image and Signal Processing: Evolution
               in Remote Sensing, {WHISPERS} 2018, Amsterdam, The Netherlands, September
               23-26, 2018},
  pages     = {1--5},
  publisher = {{IEEE}},
  year      = {2018},
  url       = {https://doi.org/10.1109/WHISPERS.2018.8747243},
  doi       = {10.1109/WHISPERS.2018.8747243},
  timestamp = {Wed, 16 Oct 2019 14:14:50 +0200},
  biburl    = {https://dblp.org/rec/conf/whispers/LiangLZYQ18.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
a service of Schloss Dagstuhl - Leibniz Center for Informatics