
Prateek Jain 0002
Person information
- affiliation: Microsoft Research India
- affiliation (former): UT Austin, USA
- affiliation (former): IIT Kanpur, India
Other persons with the same name
- Prateek Jain — disambiguation page
- Prateek Jain 0001 — Nuance Research, Sunnyvale, CA, USA (and 2 more)
- Prateek Jain 0003 — Bell Labs, USA (and 1 more)
- Prateek Jain 0004 — Dhirubhai Ambani Institute of Information and Communication Technology
- Prateek Jain 0005 — University of California, Irvine, USA
- Prateek Jain 0006 — ITM University, Gwalior, India
- Prateek Jain 0007 — Jaypee Institute of Information Technology University, Noida, India
- Prateek Jain 0008
— Indian Institute of Technology Indore, Madhya Pradesh, India
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [i66]Aadirupa Saha, Nagarajan Natarajan, Praneeth Netrapalli, Prateek Jain:
Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization. CoRR abs/2102.07387 (2021) - [i65]Harshay Shah, Prateek Jain, Praneeth Netrapalli:
Do Input Gradients Highlight Discriminative Features? CoRR abs/2102.12781 (2021) - 2020
- [c91]Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, Prateek Jain:
DROCC: Deep Robust One-Class Classification. ICML 2020: 3711-3721 - [c90]Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham M. Kakade, Ali Farhadi:
Soft Threshold Weight Reparameterization for Learnable Sparsity. ICML 2020: 5544-5555 - [c89]Dheeraj Nagaraj, Xian Wu, Guy Bresler, Prateek Jain, Praneeth Netrapalli:
Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms. NeurIPS 2020 - [c88]Oindrila Saha, Aditya Kusupati, Harsha Vardhan Simhadri, Manik Varma, Prateek Jain:
RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference. NeurIPS 2020 - [c87]Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, Praneeth Netrapalli:
The Pitfalls of Simplicity Bias in Neural Networks. NeurIPS 2020 - [c86]Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, Sewoong Oh:
Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method. NeurIPS 2020 - [i64]Aditya Kusupati, Vivek Ramanujan, Raghav Somani
, Mitchell Wortsman, Prateek Jain, Sham M. Kakade, Ali Farhadi:
Soft Threshold Weight Reparameterization for Learnable Sparsity. CoRR abs/2002.03231 (2020) - [i63]Oindrila Saha, Aditya Kusupati, Harsha Vardhan Simhadri, Manik Varma, Prateek Jain:
RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference. CoRR abs/2002.11921 (2020) - [i62]Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, Prateek Jain:
DROCC: Deep Robust One-Class Classification. CoRR abs/2002.12718 (2020) - [i61]Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, Praneeth Netrapalli:
The Pitfalls of Simplicity Bias in Neural Networks. CoRR abs/2006.07710 (2020) - [i60]Guy Bresler, Prateek Jain, Dheeraj Nagaraj, Praneeth Netrapalli, Xian Wu:
Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms. CoRR abs/2006.08916 (2020) - [i59]Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar:
Globally-convergent Iteratively Reweighted Least Squares for Robust Regression Problems. CoRR abs/2006.14211 (2020) - [i58]Nagarajan Natarajan, Ajaykrishna Karthikeyan, Prateek Jain, Ivan Radicek, Sriram K. Rajamani, Sumit Gulwani, Johannes Gehrke:
Programming by Rewards. CoRR abs/2007.06835 (2020) - [i57]Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, Sewoong Oh:
Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method. CoRR abs/2010.01848 (2020)
2010 – 2019
- 2019
- [c85]Vivek Gupta, Rahul Wadbude, Nagarajan Natarajan, Harish Karnick, Prateek Jain, Piyush Rai:
Distributional Semantics Meets Multi-Label Learning. AAAI 2019: 3747-3754 - [c84]Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar:
Globally-convergent Iteratively Reweighted Least Squares for Robust Regression Problems. AISTATS 2019: 313-322 - [c83]Nagarajan Natarajan, Danny Simmons, Naren Datha, Prateek Jain, Sumit Gulwani:
Learning Natural Programs from a Few Examples in Real-Time. AISTATS 2019: 1714-1722 - [c82]Pengkai Zhu, Durmus Alp Emre Acar, Nan Feng, Prateek Jain, Venkatesh Saligrama:
Cost aware Inference for IoT Devices. AISTATS 2019: 2770-2779 - [c81]Prateek Jain, Dheeraj Nagaraj, Praneeth Netrapalli:
Making the Last Iterate of SGD Information Theoretically Optimal. COLT 2019: 1752-1755 - [c80]Arun Sai Suggala, Kush Bhatia, Pradeep Ravikumar, Prateek Jain:
Adaptive Hard Thresholding for Near-optimal Consistent Robust Regression. COLT 2019: 2892-2897 - [c79]Rong Ge, Prateek Jain, Sham M. Kakade, Rahul Kidambi, Dheeraj M. Nagaraj, Praneeth Netrapalli:
Open Problem: Do Good Algorithms Necessarily Query Bad Points? COLT 2019: 3190-3193 - [c78]Dheeraj Nagaraj, Prateek Jain, Praneeth Netrapalli:
SGD without Replacement: Sharper Rates for General Smooth Convex Functions. ICML 2019: 4703-4711 - [c77]Kai Zhong, Zhao Song, Prateek Jain, Inderjit S. Dhillon:
Provable Non-linear Inductive Matrix Completion. NeurIPS 2019: 11435-11445 - [c76]Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, Sewoong Oh:
Efficient Algorithms for Smooth Minimax Optimization. NeurIPS 2019: 12659-12670 - [c75]Don Kurian Dennis, Durmus Alp Emre Acar, Vikram Mandikal, Vinu Sankar Sadasivan, Venkatesh Saligrama, Harsha Vardhan Simhadri, Prateek Jain:
Shallow RNN: Accurate Time-series Classification on Resource Constrained Devices. NeurIPS 2019: 12896-12906 - [c74]Shishir G. Patil, Don Kurian Dennis, Chirag Pabbaraju, Nadeem Shaheer, Harsha Vardhan Simhadri, Vivek Seshadri, Manik Varma, Prateek Jain:
GesturePod: Enabling On-device Gesture-based Interaction for White Cane Users. UIST 2019: 403-415 - [i56]Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, Manik Varma:
FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network. CoRR abs/1901.02358 (2019) - [i55]Prateek Jain, Dheeraj Nagaraj, Praneeth Netrapalli:
SGD without Replacement: Sharper Rates for General Smooth Convex Functions. CoRR abs/1903.01463 (2019) - [i54]Arun Sai Suggala, Kush Bhatia, Pradeep Ravikumar, Prateek Jain:
Adaptive Hard Thresholding for Near-optimal Consistent Robust Regression. CoRR abs/1903.08192 (2019) - [i53]Prateek Jain, Dheeraj Nagaraj, Praneeth Netrapalli:
Making the Last Iterate of SGD Information Theoretically Optimal. CoRR abs/1904.12443 (2019) - [i52]Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, Sewoong Oh:
Efficient Algorithms for Smooth Minimax Optimization. CoRR abs/1907.01543 (2019) - [i51]Chirag Pabbaraju, Prateek Jain:
Learning Functions over Sets via Permutation Adversarial Networks. CoRR abs/1907.05638 (2019) - [i50]Sahil Bhatia, Saswat Padhi, Nagarajan Natarajan, Rahul Sharma, Prateek Jain:
OASIS: ILP-Guided Synthesis of Loop Invariants. CoRR abs/1911.11728 (2019) - 2018
- [j11]Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani, Todd D. Millstein:
FlashProfile: a framework for synthesizing data profiles. Proc. ACM Program. Lang. 2(OOPSLA): 150:1-150:28 (2018) - [c73]Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Aaron Sidford:
Accelerating Stochastic Gradient Descent for Least Squares Regression. COLT 2018: 545-604 - [c72]Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, Praneeth Netrapalli:
Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form. COLT 2018: 3243-3270 - [c71]Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, Sham M. Kakade:
On the insufficiency of existing momentum schemes for Stochastic Optimization. ICLR 2018 - [c70]Prateek Jain, Om Dipakbhai Thakkar, Abhradeep Thakurta:
Differentially Private Matrix Completion Revisited. ICML 2018: 2220-2229 - [c69]Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, Sham M. Kakade:
On the Insufficiency of Existing Momentum Schemes for Stochastic Optimization. ITA 2018: 1-9 - [c68]Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, Manik Varma:
FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network. NeurIPS 2018: 9031-9042 - [c67]Raghav Somani, Chirag Gupta, Prateek Jain, Praneeth Netrapalli:
Support Recovery for Orthogonal Matching Pursuit: Upper and Lower bounds. NeurIPS 2018: 10837-10847 - [c66]Don Kurian Dennis, Chirag Pabbaraju, Harsha Vardhan Simhadri, Prateek Jain:
Multiple Instance Learning for Efficient Sequential Data Classification on Resource-constrained Devices. NeurIPS 2018: 10976-10987 - [i49]Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, Praneeth Netrapalli:
Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form. CoRR abs/1803.00186 (2018) - [i48]Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, Sham M. Kakade:
On the insufficiency of existing momentum schemes for Stochastic Optimization. CoRR abs/1803.05591 (2018) - [i47]Kai Zhong, Zhao Song, Prateek Jain, Inderjit S. Dhillon:
Nonlinear Inductive Matrix Completion based on One-layer Neural Networks. CoRR abs/1805.10477 (2018) - 2017
- [j10]Prateek Jain, Purushottam Kar
:
Non-convex Optimization for Machine Learning. Found. Trends Mach. Learn. 10(3-4): 142-336 (2017) - [j9]Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Aaron Sidford:
Parallelizing Stochastic Gradient Descent for Least Squares Regression: Mini-batching, Averaging, and Model Misspecification. J. Mach. Learn. Res. 18: 223:1-223:42 (2017) - [j8]Prateek Jain, Ambuj Tewari
, Inderjit S. Dhillon:
Partial Hard Thresholding. IEEE Trans. Inf. Theory 63(5): 3029-3038 (2017) - [c65]Apoorv Aggarwal, Sandip Ghoshal, Ankith M. S. Shetty, Suhit Sinha, Ganesh Ramakrishnan, Purushottam Kar, Prateek Jain:
Scalable Optimization of Multivariate Performance Measures in Multi-instance Multi-label Learning. AAAI 2017: 1698-1704 - [c64]Prateek Jain, Chi Jin, Sham M. Kakade, Praneeth Netrapalli:
Global Convergence of Non-Convex Gradient Descent for Computing Matrix Squareroot. AISTATS 2017: 479-488 - [c63]Yeshwanth Cherapanamjeri, Prateek Jain, Praneeth Netrapalli:
Thresholding Based Outlier Robust PCA. COLT 2017: 593-628 - [c62]Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, Aaron Sidford:
A Markov Chain Theory Approach to Characterizing the Minimax Optimality of Stochastic Gradient Descent (for Least Squares). FSTTCS 2017: 2:1-2:10 - [c61]Kamalika Chaudhuri, Prateek Jain, Nagarajan Natarajan:
Active Heteroscedastic Regression. ICML 2017: 694-702 - [c60]Yeshwanth Cherapanamjeri, Kartik Gupta, Prateek Jain:
Nearly Optimal Robust Matrix Completion. ICML 2017: 797-805 - [c59]Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, Prateek Jain:
ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices. ICML 2017: 1331-1340 - [c58]Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, Inderjit S. Dhillon:
Recovery Guarantees for One-hidden-layer Neural Networks. ICML 2017: 4140-4149 - [c57]Kai Zhong, Prateek Jain, Ashish Kapoor:
Fast second-order cone programming for safe mission planning. ICRA 2017: 79-86 - [c56]Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, Purushottam Kar:
Consistent Robust Regression. NIPS 2017: 2110-2119 - [c55]Aditi Raghunathan, Prateek Jain, Ravishankar Krishnaswamy:
Learning Mixture of Gaussians with Streaming Data. NIPS 2017: 6605-6614 - [i46]Yeshwanth Cherapanamjeri, Prateek Jain, Praneeth Netrapalli:
Thresholding based Efficient Outlier Robust PCA. CoRR abs/1702.05571 (2017) - [i45]Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Aaron Sidford:
Accelerating Stochastic Gradient Descent. CoRR abs/1704.08227 (2017) - [i44]Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, Inderjit S. Dhillon:
Recovery Guarantees for One-hidden-layer Neural Networks. CoRR abs/1706.03175 (2017) - [i43]Aditi Raghunathan, Ravishankar Krishnaswamy, Prateek Jain:
Learning Mixture of Gaussians with Streaming Data. CoRR abs/1707.02391 (2017) - [i42]Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani, Todd D. Millstein:
FlashProfile: Interactive Synthesis of Syntactic Profiles. CoRR abs/1709.05725 (2017) - [i41]Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, Aaron Sidford:
A Markov Chain Theory Approach to Characterizing the Minimax Optimality of Stochastic Gradient Descent (for Least Squares). CoRR abs/1710.09430 (2017) - [i40]Prateek Jain, Purushottam Kar:
Non-convex Optimization for Machine Learning. CoRR abs/1712.07897 (2017) - [i39]Prateek Jain, Om Thakkar, Abhradeep Thakurta:
Differentially Private Matrix Completion, Revisited. CoRR abs/1712.09765 (2017) - 2016
- [j7]Alekh Agarwal, Animashree Anandkumar, Prateek Jain, Praneeth Netrapalli:
Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization. SIAM J. Optim. 26(4): 2775-2799 (2016) - [c54]Anima Anandkumar, Prateek Jain, Yang Shi, U. N. Niranjan:
Tensor vs. Matrix Methods: Robust Tensor Decomposition under Block Sparse Perturbations. AISTATS 2016: 268-276 - [c53]Prateek Jain, Chi Jin, Sham M. Kakade, Praneeth Netrapalli, Aaron Sidford:
Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm. COLT 2016: 1147-1164 - [c52]Vidyadhar Rao, Prateek Jain, C. V. Jawahar
:
Diverse Yet Efficient Retrieval using Locality Sensitive Hashing. ICMR 2016: 189-196 - [c51]Prateek Jain, Nikhil Rao, Inderjit S. Dhillon:
Structured Sparse Regression via Greedy Hard Thresholding. NIPS 2016: 1516-1524 - [c50]Kai Zhong, Prateek Jain, Inderjit S. Dhillon:
Mixed Linear Regression with Multiple Components. NIPS 2016: 2190-2198 - [c49]Fan Yang, Rina Foygel Barber, Prateek Jain, John D. Lafferty:
Selective inference for group-sparse linear models. NIPS 2016: 2469-2477 - [c48]Nagarajan Natarajan, Prateek Jain:
Regret Bounds for Non-decomposable Metrics with Missing Labels. NIPS 2016: 2874-2882 - [e1]Madhav Marathe, Mukesh K. Mohania, Mausam, Prateek Jain:
Proceedings of the 3rd IKDD Conference on Data Science, CODS 2016, Pune, India, March 13-16, 2016. ACM 2016, ISBN 978-1-4503-4217-9 [contents] - [i38]Prateek Jain, Nikhil Rao, Inderjit S. Dhillon:
Structured Sparse Regression via Greedy Hard-Thresholding. CoRR abs/1602.06042 (2016) - [i37]Prateek Jain, Chi Jin, Sham M. Kakade, Praneeth Netrapalli, Aaron Sidford:
Matching Matrix Bernstein with Little Memory: Near-Optimal Finite Sample Guarantees for Oja's Algorithm. CoRR abs/1602.06929 (2016) - [i36]Prateek Jain, Nagarajan Natarajan:
Regret Bounds for Non-decomposable Metrics with Missing Labels. CoRR abs/1606.02077 (2016) - [i35]Yeshwanth Cherapanamjeri, Kartik Gupta, Prateek Jain:
Nearly-optimal Robust Matrix Completion. CoRR abs/1606.07315 (2016) - [i34]Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, Purushottam Kar:
Efficient and Consistent Robust Time Series Analysis. CoRR abs/1607.00146 (2016) - [i33]Kai Zhong, Prateek Jain, Ashish Kapoor:
Fast Second-order Cone Programming for Safe Mission Planning. CoRR abs/1609.05243 (2016) - [i32]Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Aaron Sidford:
Parallelizing Stochastic Approximation Through Mini-Batching and Tail-Averaging. CoRR abs/1610.03774 (2016) - 2015
- [j6]Praneeth Netrapalli, Prateek Jain, Sujay Sanghavi:
Phase Retrieval Using Alternating Minimization. IEEE Trans. Signal Process. 63(18): 4814-4826 (2015) - [c47]Kai Zhong, Prateek Jain, Inderjit S. Dhillon:
Efficient Matrix Sensing Using Rank-1 Gaussian Measurements. ALT 2015: 3-18 - [c46]Prateek Jain, Praneeth Netrapalli:
Fast Exact Matrix Completion with Finite Samples. COLT 2015: 1007-1034 - [c45]Purushottam Kar, Harikrishna Narasimhan, Prateek Jain:
Surrogate Functions for Maximizing Precision at the Top. ICML 2015: 189-198 - [c44]Harikrishna Narasimhan, Purushottam Kar, Prateek Jain:
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes. ICML 2015: 199-208 - [c43]Kush Bhatia, Prateek Jain, Purushottam Kar:
Robust Regression via Hard Thresholding. NIPS 2015: 721-729 - [c42]Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, Prateek Jain:
Sparse Local Embeddings for Extreme Multi-label Classification. NIPS 2015: 730-738 - [c41]Prateek Jain, Nagarajan Natarajan, Ambuj Tewari:
Predtron: A Family of Online Algorithms for General Prediction Problems. NIPS 2015: 1009-1017 - [c40]Prateek Jain, Ambuj Tewari:
Alternating Minimization for Regression Problems with Vector-valued Outputs. NIPS 2015: 1126-1134 - [c39]Srinadh Bhojanapalli
, Prateek Jain, Sujay Sanghavi:
Tighter Low-rank Approximation via Sampling the Leveraged Element. SODA 2015: 902-920 - [i31]Prateek Jain, Vivek Kulkarni, Abhradeep Thakurta, Oliver Williams:
To Drop or Not to Drop: Robustness, Consistency and Differential Privacy Properties of Dropout. CoRR abs/1503.02031 (2015) - [i30]Harikrishna Narasimhan, Purushottam Kar, Prateek Jain:
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes. CoRR abs/1505.06812 (2015) - [i29]Purushottam Kar, Harikrishna Narasimhan, Prateek Jain:
Surrogate Functions for Maximizing Precision at the Top. CoRR abs/1505.06813 (2015) - [i28]Kush Bhatia, Prateek Jain, Purushottam Kar:
Robust Regression via Hard Thresholding. CoRR abs/1506.02428 (2015) - [i27]Kush Bhatia, Himanshu Jain, Purushottam Kar, Prateek Jain, Manik Varma:
Locally Non-linear Embeddings for Extreme Multi-label Learning. CoRR abs/1507.02743 (2015) - [i26]Prateek Jain, Chi Jin, Sham M. Kakade, Praneeth Netrapalli:
Computing Matrix Squareroot via Non Convex Local Search. CoRR abs/1507.05854 (2015) - [i25]Vidyadhar Rao, Prateek Jain, C. V. Jawahar:
Diverse Yet Efficient Retrieval using Hash Functions. CoRR abs/1509.06553 (2015) - [i24]Animashree Anandkumar, Prateek Jain, Yang Shi, U. N. Niranjan:
Tensor vs Matrix Methods: Robust Tensor Decomposition under Block Sparse Perturbations. CoRR abs/1510.04747 (2015) - 2014
- [j5]Sudheendra Vijayanarasimhan, Prateek Jain, Kristen Grauman:
Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning. IEEE Trans. Pattern Anal. Mach. Intell. 36(2): 276-288 (2014) - [c38]Alekh Agarwal, Animashree Anandkumar, Prateek Jain, Praneeth Netrapalli, Rashish Tandon:
Learning Sparsely Used Overcomplete Dictionaries. COLT 2014: 123-137 - [c37]Prateek Jain, Sewoong Oh:
Learning Mixtures of Discrete Product Distributions using Spectral Decompositions. COLT 2014: 824-856 - [c36]Prateek Jain, Abhradeep Guha Thakurta:
(Near) Dimension Independent Risk Bounds for Differentially Private Learning. ICML 2014: 476-484 - [c35]Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, Inderjit S. Dhillon:
Large-scale Multi-label Learning with Missing Labels. ICML 2014: 593-601 - [c34]Srinadh Bhojanapalli, Prateek Jain:
Universal Matrix Completion. ICML 2014: 1881-1889 - [c33]Prateek Jain, Ambuj Tewari, Purushottam Kar:
On Iterative Hard Thresholding Methods for High-dimensional M-Estimation. NIPS 2014: 685-693 - [c32]Purushottam Kar, Harikrishna Narasimhan, Prateek Jain:
Online and Stochastic Gradient Methods for Non-decomposable Loss Functions. NIPS 2014: 694-702 - [c31]Deeparnab Chakrabarty, Prateek Jain, Pravesh Kothari:
Provable Submodular Minimization using Wolfe's Algorithm. NIPS 2014: 802-809 - [c30]Praneeth Netrapalli, U. N. Niranjan, Sujay Sanghavi, Animashree Anandkumar, Prateek Jain:
Non-convex Robust PCA. NIPS 2014: 1107-1115 - [c29]Prateek Jain, Sewoong Oh:
Provable Tensor Factorization with Missing Data. NIPS 2014: 1431-1439 - [i23]Srinadh Bhojanapalli, Prateek Jain:
Universal Matrix Completion. CoRR abs/1402.2324 (2014) - [i22]Srinadh Bhojanapalli, Prateek Jain, Sujay Sanghavi:
Tighter Low-rank Approximation via Sampling the Leveraged Element. CoRR abs/1410.3886 (2014) - [i21]Prateek Jain, Ambuj Tewari, Purushottam Kar:
On Iterative Hard Thresholding Methods for High-dimensional M-Estimation. CoRR abs/1410.5137 (2014) - [i20]Purushottam Kar, Harikrishna Narasimhan, Prateek Jain:
Online and Stochastic Gradient Methods for Non-decomposable Loss Functions. CoRR abs/1410.6776 (2014) - [i19]Praneeth Netrapalli, U. N. Niranjan, Sujay Sanghavi, Animashree Anandkumar, Prateek Jain:
Non-convex Robust PCA. CoRR abs/1410.7660 (2014) - [i18]Deeparnab Chakrabarty, Prateek Jain, Pravesh Kothari:
Provable Submodular Minimization using Wolfe's Algorithm. CoRR abs/1411.0095 (2014) - [i17]Prateek Jain, Praneeth Netrapalli:
Fast Exact Matrix Completion with Finite Samples. CoRR abs/1411.1087 (2014) - 2013
- [j4]K. S. M. Tozammel Hossain, Debprakash Patnaik, Srivatsan Laxman, Prateek Jain, Chris Bailey-Kellogg, Naren Ramakrishnan:
Improved Multiple Sequence Alignments Using Coupled Pattern Mining. IEEE ACM Trans. Comput. Biol. Bioinform. 10(5): 1098-1112 (2013) - [c28]Prateek Jain, Abhradeep Thakurta:
Differentially Private Learning with Kernels. ICML (3) 2013: 118-126 - [c27]Sivakant Gopi, Praneeth Netrapalli, Prateek Jain, Aditya V. Nori:
One-Bit Compressed Sensing: Provable Support and Vector Recovery. ICML (3) 2013: 154-162 - [c26]Purushottam Kar, Bharath K. Sriperumbudur, Prateek Jain, Harish Karnick:
On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions. ICML (3) 2013: 441-449 - [c25]Praneeth Netrapalli, Prateek Jain, Sujay Sanghavi:
Phase Retrieval using Alternating Minimization. NIPS 2013: 2796-2804 - [c24]Ioannis Mitliagkas, Constantine Caramanis, Prateek Jain:
Memory Limited, Streaming PCA. NIPS 2013: 2886-2894 - [c23]Prateek Jain, Praneeth Netrapalli, Sujay Sanghavi:
Low-rank matrix completion using alternating minimization. STOC 2013: 665-674 - [c22]Abhirup Nath, Shibnath Mukherjee, Prateek Jain, Navin Goyal, Srivatsan Laxman:
Ad impression forecasting for sponsored search. WWW 2013: 943-952 - [i16]Purushottam Kar, Bharath K. Sriperumbudur, Prateek Jain, Harish Karnick:
On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions. CoRR abs/1305.2505 (2013) - [i15]Praneeth Netrapalli, Prateek Jain, Sujay Sanghavi:
Phase Retrieval using Alternating Minimization. CoRR abs/1306.0160 (2013) - [i14]Prateek Jain, Inderjit S. Dhillon:
Provable Inductive Matrix Completion. CoRR abs/1306.0626 (2013) - [i13]