default search action
Jingrui He
何京芮
Person information
- affiliation: University of Illinois at Urbana-Champaign, IL, USA
- affiliation: Arizona State University, AZ, USA
- affiliation (Ph.D., 2010): Carnegie Mellon University, PA, USA
- affiliation (former): Tsinghua University, China
- unicode name: 何京芮
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j32]Michael C. Loui, Nigel Bosch, Anita Say Chan, Jenny L. Davis, Rochelle Gutiérrez, Jingrui He, Karrie Karahalios, Sanmi Koyejo, Ruby Mendenhall, Madelyn Rose Sanfilippo, Hanghang Tong, Lav R. Varshney, Yang Wang:
Artificial Intelligence, Social Responsibility, and the Roles of the University. Commun. ACM 67(8): 22-25 (2024) - [j31]Dawei Zhou, Jingrui He:
Rare Category Analysis for Complex Data: A Review. ACM Comput. Surv. 56(5): 123:1-123:35 (2024) - [c150]Wenxuan Bao, Jun Wu, Jingrui He:
BOBA: Byzantine-Robust Federated Learning with Label Skewness. AISTATS 2024: 892-900 - [c149]Lecheng Zheng, Dawei Zhou, Hanghang Tong, Jiejun Xu, Yada Zhu, Jingrui He:
Fairgen: Towards Fair Graph Generation. ICDE 2024: 2285-2297 - [c148]Yikun Ban, Ishika Agarwal, Ziwei Wu, Yada Zhu, Kommy Weldemariam, Hanghang Tong, Jingrui He:
Neural Active Learning Beyond Bandits. ICLR 2024 - [c147]Rohan Deb, Yikun Ban, Shiliang Zuo, Jingrui He, Arindam Banerjee:
Contextual Bandits with Online Neural Regression. ICLR 2024 - [c146]Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich, Jingrui He, Bo Long:
VCR-Graphormer: A Mini-batch Graph Transformer via Virtual Connections. ICLR 2024 - [c145]Tianxin Wei, Bowen Jin, Ruirui Li, Hansi Zeng, Zhengyang Wang, Jianhui Sun, Qingyu Yin, Hanqing Lu, Suhang Wang, Jingrui He, Xianfeng Tang:
Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond. ICLR 2024 - [c144]Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy Weldemariam, Jingrui He, Hanghang Tong:
Class-Imbalanced Graph Learning without Class Rebalancing. ICML 2024 - [c143]Zhichen Zeng, Ruizhong Qiu, Zhe Xu, Zhining Liu, Yuchen Yan, Tianxin Wei, Lei Ying, Jingrui He, Hanghang Tong:
Graph Mixup on Approximate Gromov-Wasserstein Geodesics. ICML 2024 - [c142]Yikun Ban, Yunzhe Qi, Tianxin Wei, Lihui Liu, Jingrui He:
Meta Clustering of Neural Bandits. KDD 2024: 95-106 - [c141]Jun Wu, Jingrui He, Hanghang Tong:
Distributional Network of Networks for Modeling Data Heterogeneity. KDD 2024: 3379-3390 - [c140]Lecheng Zheng, Baoyu Jing, Zihao Li, Hanghang Tong, Jingrui He:
Heterogeneous Contrastive Learning for Foundation Models and Beyond. KDD 2024: 6666-6676 - [c139]Zihao Li, Yuyi Ao, Jingrui He:
SpherE: Expressive and Interpretable Knowledge Graph Embedding for Set Retrieval. SIGIR 2024: 2629-2634 - [c138]Haonan Wang, Ziwei Wu, Jingrui He:
FairIF: Boosting Fairness in Deep Learning via Influence Functions with Validation Set Sensitive Attributes. WSDM 2024: 721-730 - [c137]Yikun Ban, Yunzhe Qi, Jingrui He:
Neural Contextual Bandits for Personalized Recommendation. WWW (Companion Volume) 2024: 1246-1249 - [c136]Jingrui He, Jian Kang, Fatemeh Nargesian, Haohui Wang, An Zhang, Dawei Zhou:
TrustLOG: The Second Workshop on Trustworthy Learning on Graphs. WWW (Companion Volume) 2024: 1785-1788 - [c135]Xinrui He, Shuo Liu, Jacky Keung, Jingrui He:
Co-clustering for Federated Recommender System. WWW 2024: 3821-3832 - [c134]Lecheng Zheng, Zhengzhang Chen, Jingrui He, Haifeng Chen:
MULAN: Multi-modal Causal Structure Learning and Root Cause Analysis for Microservice Systems. WWW 2024: 4107-4116 - [i60]Lecheng Zheng, Zhengzhang Chen, Jingrui He, Haifeng Chen:
Multi-modal Causal Structure Learning and Root Cause Analysis. CoRR abs/2402.02357 (2024) - [i59]Tianxin Wei, Bowen Jin, Ruirui Li, Hansi Zeng, Zhengyang Wang, Jianhui Sun, Qingyu Yin, Hanqing Lu, Suhang Wang, Jingrui He, Xianfeng Tang:
Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond. CoRR abs/2403.10667 (2024) - [i58]Baoyu Jing, Yansen Wang, Guoxin Sui, Jing Hong, Jingrui He, Yuqing Yang, Dongsheng Li, Kan Ren:
Automated Contrastive Learning Strategy Search for Time Series. CoRR abs/2403.12641 (2024) - [i57]Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich, Jingrui He, Bo Long:
VCR-Graphormer: A Mini-batch Graph Transformer via Virtual Connections. CoRR abs/2403.16030 (2024) - [i56]Lecheng Zheng, Baoyu Jing, Zihao Li, Hanghang Tong, Jingrui He:
Heterogeneous Contrastive Learning for Foundation Models and Beyond. CoRR abs/2404.00225 (2024) - [i55]Lihui Liu, Zihao Wang, Ruizhong Qiu, Yikun Ban, Eunice Chan, Yangqiu Song, Jingrui He, Hanghang Tong:
Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs. CoRR abs/2404.04264 (2024) - [i54]Yikun Ban, Ishika Agarwal, Ziwei Wu, Yada Zhu, Kommy Weldemariam, Hanghang Tong, Jingrui He:
Neural Active Learning Beyond Bandits. CoRR abs/2404.12522 (2024) - [i53]Zihao Li, Yuyi Ao, Jingrui He:
SpherE: Expressive and Interpretable Knowledge Graph Embedding for Set Retrieval. CoRR abs/2404.19130 (2024) - [i52]Dongqi Fu, Yada Zhu, Hanghang Tong, Kommy Weldemariam, Onkar Bhardwaj, Jingrui He:
Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection. CoRR abs/2408.04254 (2024) - [i51]Yikun Ban, Yunzhe Qi, Tianxin Wei, Lihui Liu, Jingrui He:
Meta Clustering of Neural Bandits. CoRR abs/2408.05586 (2024) - 2023
- [j30]Dongqi Fu, Wenxuan Bao, Ross Maciejewski, Hanghang Tong, Jingrui He:
Privacy-Preserving Graph Machine Learning from Data to Computation: A Survey. SIGKDD Explor. 25(1): 54-72 (2023) - [j29]Jun Wu, Jingrui He:
A Unified Framework for Adversarial Attacks on Multi-Source Domain Adaptation. IEEE Trans. Knowl. Data Eng. 35(11): 11039-11050 (2023) - [c133]Jun Wu, Jingrui He, Elizabeth A. Ainsworth:
Non-IID Transfer Learning on Graphs. AAAI 2023: 10342-10350 - [c132]Xinrui He, Tianxin Wei, Jingrui He:
Robust Basket Recommendation via Noise-tolerated Graph Contrastive Learning. CIKM 2023: 709-719 - [c131]Wenxuan Bao, Haohan Wang, Jun Wu, Jingrui He:
Optimizing the Collaboration Structure in Cross-Silo Federated Learning. ICML 2023: 1718-1736 - [c130]Tianxin Wei, Zeming Guo, Yifan Chen, Jingrui He:
NTK-approximating MLP Fusion for Efficient Language Model Fine-tuning. ICML 2023: 36821-36838 - [c129]Yunzhe Qi, Yikun Ban, Jingrui He:
Graph Neural Bandits. KDD 2023: 1920-1931 - [c128]Jun Wu, Wenxuan Bao, Elizabeth A. Ainsworth, Jingrui He:
Personalized Federated Learning with Parameter Propagation. KDD 2023: 2594-2605 - [c127]Jun Wu, Jingrui He:
Trustworthy Transfer Learning: Transferability and Trustworthiness. KDD 2023: 5829-5830 - [c126]Jiaqi Ma, Jiong Zhu, Yuxiao Dong, Danai Koutra, Jingrui He, Qiaozhu Mei, Anton Tsitsulin, Xingjian Zhang, Marinka Zitnik:
The 3rd Workshop on Graph Learning Benchmarks (GLB 2023). KDD 2023: 5870-5871 - [c125]Wenxuan Bao, Tianxin Wei, Haohan Wang, Jingrui He:
Adaptive Test-Time Personalization for Federated Learning. NeurIPS 2023 - [c124]Yunzhe Qi, Yikun Ban, Tianxin Wei, Jiaru Zou, Huaxiu Yao, Jingrui He:
Meta-Learning with Neural Bandit Scheduler. NeurIPS 2023 - [c123]Jun Wu, Lisa Ainsworth, Andrew Leakey, Haixun Wang, Jingrui He:
Graph-Structured Gaussian Processes for Transferable Graph Learning. NeurIPS 2023 - [c122]Lecheng Zheng, Yada Zhu, Jingrui He:
Fairness-aware Multi-view Clustering. SDM 2023: 856-864 - [c121]Dongqi Fu, Zhe Xu, Hanghang Tong, Jingrui He:
Natural and Artificial Dynamics in GNNs: A Tutorial. WSDM 2023: 1252-1255 - [c120]Zihao Li, Dongqi Fu, Jingrui He:
Everything Evolves in Personalized PageRank. WWW 2023: 3342-3352 - [c119]Dongqi Fu, Dawei Zhou, Ross Maciejewski, Arie Croitoru, Marcus Boyd, Jingrui He:
Fairness-Aware Clique-Preserving Spectral Clustering of Temporal Graphs. WWW 2023: 3755-3765 - [e3]Jingrui He, Themis Palpanas, Xiaohua Hu, Alfredo Cuzzocrea, Dejing Dou, Dominik Slezak, Wei Wang, Aleksandra Gruca, Jerry Chun-Wei Lin, Rakesh Agrawal:
IEEE International Conference on Big Data, BigData 2023, Sorrento, Italy, December 15-18, 2023. IEEE 2023, ISBN 979-8-3503-2445-7 [contents] - [i50]Lecheng Zheng, Yada Zhu, Jingrui He:
Fairness-aware Multi-view Clustering. CoRR abs/2302.05788 (2023) - [i49]Lecheng Zheng, Dawei Zhou, Hanghang Tong, Jiejun Xu, Yada Zhu, Jingrui He:
FairGen: Towards Fair Graph Generation. CoRR abs/2303.17743 (2023) - [i48]Yikun Ban, Yuchen Yan, Arindam Banerjee, Jingrui He:
Neural Exploitation and Exploration of Contextual Bandits. CoRR abs/2305.03784 (2023) - [i47]Wenxuan Bao, Haohan Wang, Jun Wu, Jingrui He:
Optimizing the Collaboration Structure in Cross-Silo Federated Learning. CoRR abs/2306.06508 (2023) - [i46]Dongqi Fu, Wenxuan Bao, Ross Maciejewski, Hanghang Tong, Jingrui He:
Privacy-Preserving Graph Machine Learning from Data to Computation: A Survey. CoRR abs/2307.04338 (2023) - [i45]Tianxin Wei, Zeming Guo, Yifan Chen, Jingrui He:
NTK-approximating MLP Fusion for Efficient Language Model Fine-tuning. CoRR abs/2307.08941 (2023) - [i44]Yunzhe Qi, Yikun Ban, Jingrui He:
Graph Neural Bandits. CoRR abs/2308.10808 (2023) - [i43]Zhining Liu, Zhichen Zeng, Ruizhong Qiu, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy Weldemariam, Jingrui He, Hanghang Tong:
Topological Augmentation for Class-Imbalanced Node Classification. CoRR abs/2308.14181 (2023) - [i42]Wenxuan Bao, Tianxin Wei, Haohan Wang, Jingrui He:
Adaptive Test-Time Personalization for Federated Learning. CoRR abs/2310.18816 (2023) - [i41]Xinrui He, Tianxin Wei, Jingrui He:
Robust Basket Recommendation via Noise-tolerated Graph Contrastive Learning. CoRR abs/2311.16334 (2023) - [i40]Haoyang Liu, Tiancheng Xing, Luwei Li, Vibhu Dalal, Jingrui He, Haohan Wang:
Dataset Distillation via the Wasserstein Metric. CoRR abs/2311.18531 (2023) - [i39]Rohan Deb, Yikun Ban, Shiliang Zuo, Jingrui He, Arindam Banerjee:
Contextual Bandits with Online Neural Regression. CoRR abs/2312.07145 (2023) - [i38]Yikun Ban, Yunzhe Qi, Jingrui He:
Neural Contextual Bandits for Personalized Recommendation. CoRR abs/2312.14037 (2023) - 2022
- [j28]Dongming Han, Jiacheng Pan, Rusheng Pan, Dawei Zhou, Nan Cao, Jingrui He, Mingliang Xu, Wei Chen:
iNet: visual analysis of irregular transition in multivariate dynamic networks. Frontiers Comput. Sci. 16(2): 162701 (2022) - [j27]Dongqi Fu, Jingrui He:
Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future. Frontiers Big Data 5 (2022) - [j26]Jun Wu, Jingrui He:
Dynamic transfer learning with progressive meta-task scheduler. Frontiers Big Data 5 (2022) - [j25]Yang Shi, Yuyin Liu, Hanghang Tong, Jingrui He, Gang Yan, Nan Cao:
Visual Analytics of Anomalous User Behaviors: A Survey. IEEE Trans. Big Data 8(2): 377-396 (2022) - [c118]Jun Wu, Hanghang Tong, Elizabeth A. Ainsworth, Jingrui He:
Adaptive Knowledge Transfer on Evolving Domains. IEEE Big Data 2022: 1389-1394 - [c117]Dongqi Fu, Jingrui He:
DPPIN: A Biological Repository of Dynamic Protein-Protein Interaction Network Data. IEEE Big Data 2022: 5269-5277 - [c116]Dawei Zhou, Lecheng Zheng, Dongqi Fu, Jiawei Han, Jingrui He:
MentorGNN: Deriving Curriculum for Pre-Training GNNs. CIKM 2022: 2721-2731 - [c115]Yao Zhou, Jun Wu, Haixun Wang, Jingrui He:
Adversarial Robustness through Bias Variance Decomposition: A New Perspective for Federated Learning. CIKM 2022: 2753-2762 - [c114]Dongqi Fu, Yikun Ban, Hanghang Tong, Ross Maciejewski, Jingrui He:
DISCO: Comprehensive and Explainable Disinformation Detection. CIKM 2022: 4848-4852 - [c113]Jian Kang, Shuaicheng Zhang, Bo Li, Jingrui He, Jian Pei, Dawei Zhou:
TrustLOG: The First Workshop on Trustworthy Learning on Graphs. CIKM 2022: 5169-5170 - [c112]Ziwei Wu, Jingrui He:
Fairness-aware Model-agnostic Positive and Unlabeled Learning. FAccT 2022: 1698-1708 - [c111]Yikun Ban, Yuchen Yan, Arindam Banerjee, Jingrui He:
EE-Net: Exploitation-Exploration Neural Networks in Contextual Bandits. ICLR 2022 - [c110]Jun Wu, Jingrui He:
A Unified Meta-Learning Framework for Dynamic Transfer Learning. IJCAI 2022: 3573-3579 - [c109]Dongqi Fu, Liri Fang, Ross Maciejewski, Vetle I. Torvik, Jingrui He:
Meta-Learned Metrics over Multi-Evolution Temporal Graphs. KDD 2022: 367-377 - [c108]Yunzhe Qi, Yikun Ban, Jingrui He:
Neural Bandit with Arm Group Graph. KDD 2022: 1379-1389 - [c107]Tianxin Wei, Jingrui He:
Comprehensive Fair Meta-learned Recommender System. KDD 2022: 1989-1999 - [c106]Jun Wu, Jingrui He:
Domain Adaptation with Dynamic Open-Set Targets. KDD 2022: 2039-2049 - [c105]Lecheng Zheng, Jinjun Xiong, Yada Zhu, Jingrui He:
Contrastive Learning with Complex Heterogeneity. KDD 2022: 2594-2604 - [c104]Jun Wu, Jingrui He, Sheng Wang, Kaiyu Guan, Elizabeth A. Ainsworth:
Distribution-Informed Neural Networks for Domain Adaptation Regression. NeurIPS 2022 - [c103]Yikun Ban, Yuheng Zhang, Hanghang Tong, Arindam Banerjee, Jingrui He:
Improved Algorithms for Neural Active Learning. NeurIPS 2022 - [c102]Haonan Wang, Wei Huang, Ziwei Wu, Hanghang Tong, Andrew Margenot, Jingrui He:
Deep Active Learning by Leveraging Training Dynamics. NeurIPS 2022 - [c101]Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, Zhangyang Wang:
Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative. NeurIPS 2022 - [i37]Jun Wu, Elizabeth A. Ainsworth, Sheng Wang, Kaiyu Guan, Jingrui He:
Adaptive Transfer Learning for Plant Phenotyping. CoRR abs/2201.05261 (2022) - [i36]Haonan Wang, Ziwei Wu, Jingrui He:
Training Fair Deep Neural Networks by Balancing Influence. CoRR abs/2201.05759 (2022) - [i35]Yikun Ban, Yunzhe Qi, Tianxin Wei, Jingrui He:
Neural Collaborative Filtering Bandits via Meta Learning. CoRR abs/2201.13395 (2022) - [i34]Dongqi Fu, Yikun Ban, Hanghang Tong, Ross Maciejewski, Jingrui He:
DISCO: Comprehensive and Explainable Disinformation Detection. CoRR abs/2203.04928 (2022) - [i33]Yunzhe Qi, Yikun Ban, Jingrui He:
Neural Bandit with Arm Group Graph. CoRR abs/2206.03644 (2022) - [i32]Tianxin Wei, Jingrui He:
Comprehensive Fair Meta-learned Recommender System. CoRR abs/2206.04789 (2022) - [i31]Ziwei Wu, Jingrui He:
Fairness-aware Model-agnostic Positive and Unlabeled Learning. CoRR abs/2206.09346 (2022) - [i30]Dongqi Fu, Jingrui He, Hanghang Tong, Ross Maciejewski:
Privacy-preserving Graph Analytics: Secure Generation and Federated Learning. CoRR abs/2207.00048 (2022) - [i29]Jun Wu, Jingrui He:
A Unified Meta-Learning Framework for Dynamic Transfer Learning. CoRR abs/2207.01784 (2022) - [i28]Dawei Zhou, Lecheng Zheng, Dongqi Fu, Jiawei Han, Jingrui He:
MentorGNN: Deriving Curriculum for Pre-Training GNNs. CoRR abs/2208.09905 (2022) - [i27]Wenxuan Bao, Jingrui He:
BOBA: Byzantine-Robust Federated Learning with Label Skewness. CoRR abs/2208.12932 (2022) - [i26]Yikun Ban, Yuheng Zhang, Hanghang Tong, Arindam Banerjee, Jingrui He:
Improved Algorithms for Neural Active Learning. CoRR abs/2210.00423 (2022) - [i25]Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, Zhangyang Wang:
Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative. CoRR abs/2210.03801 (2022) - [i24]Jun Wu, Jingrui He, Elizabeth A. Ainsworth:
Non-IID Transfer Learning on Graphs. CoRR abs/2212.08174 (2022) - 2021
- [j24]Xu Liu, Congzhe Su, Amey Barapatre, Xiaoting Zhao, Diane Hu, Chu-Cheng Hsieh, Jingrui He:
Interpretable Attribute-based Action-aware Bandits for Within-Session Personalization in E-commerce. IEEE Data Eng. Bull. 44(2): 65-80 (2021) - [j23]Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong, Hasan Davulcu, Jingrui He:
High-Order Structure Exploration on Massive Graphs: A Local Graph Clustering Perspective. ACM Trans. Knowl. Discov. Data 15(2): 18:1-18:26 (2021) - [j22]Yuxin Ma, Arlen Fan, Jingrui He, Arun Reddy Nelakurthi, Ross Maciejewski:
A Visual Analytics Framework for Explaining and Diagnosing Transfer Learning Processes. IEEE Trans. Vis. Comput. Graph. 27(2): 1385-1395 (2021) - [c100]Jianbo Li, Lecheng Zheng, Yada Zhu, Jingrui He:
Outlier Impact Characterization for Time Series Data. AAAI 2021: 11595-11603 - [c99]Yikun Ban, Jingrui He, Curtiss B. Cook:
Multi-facet Contextual Bandits: A Neural Network Perspective. KDD 2021: 35-45 - [c98]Jun Wu, Jingrui He:
Indirect Invisible Poisoning Attacks on Domain Adaptation. KDD 2021: 1852-1862 - [c97]Yao Zhou, Jianpeng Xu, Jun Wu, Zeinab Taghavi Nasrabadi, Evren Körpeoglu, Kannan Achan, Jingrui He:
PURE: Positive-Unlabeled Recommendation with Generative Adversarial Network. KDD 2021: 2409-2419 - [c96]Dongqi Fu, Jingrui He:
SDG: A Simplified and Dynamic Graph Neural Network. SIGIR 2021: 2273-2277 - [c95]Haonan Wang, Chang Zhou, Carl Yang, Hongxia Yang, Jingrui He:
Controllable Gradient Item Retrieval. WWW 2021: 768-777 - [c94]Lecheng Zheng, Yu Cheng, Hongxia Yang, Nan Cao, Jingrui He:
Deep Co-Attention Network for Multi-View Subspace Learning. WWW 2021: 1528-1539 - [c93]Yikun Ban, Jingrui He:
Local Clustering in Contextual Multi-Armed Bandits. WWW 2021: 2335-2346 - [i23]Lecheng Zheng, Yu Cheng, Hongxia Yang, Nan Cao, Jingrui He:
Deep Co-Attention Network for Multi-View Subspace Learning. CoRR abs/2102.07751 (2021) - [i22]Yikun Ban, Jingrui He:
Local Clustering in Contextual Multi-Armed Bandits. CoRR abs/2103.00063 (2021) - [i21]Lecheng Zheng, Yada Zhu, Jingrui He, Jinjun Xiong:
Heterogeneous Contrastive Learning. CoRR abs/2105.09401 (2021) - [i20]Haonan Wang, Chang Zhou, Carl Yang, Hongxia Yang, Jingrui He:
Controllable Gradient Item Retrieval. CoRR abs/2106.00062 (2021) - [i19]Yikun Ban, Jingrui He, Curtiss B. Cook:
Multi-facet Contextual Bandits: A Neural Network Perspective. CoRR abs/2106.03039 (2021) - [i18]Dongqi Fu, Jingrui He:
DPPIN: A Biological Dataset of Dynamic Protein-Protein Interaction Networks. CoRR abs/2107.02168 (2021) - [i17]Yikun Ban, Jingrui He:
Convolutional Neural Bandit: Provable Algorithm for Visual-aware Advertising. CoRR abs/2107.07438 (2021) - [i16]Yikun Ban, Yuchen Yan, Arindam Banerjee, Jingrui He:
EE-Net: Exploitation-Exploration Neural Networks in Contextual Bandits. CoRR abs/2110.03177 (2021) - [i15]Haonan Wang, Wei Huang, Andrew Margenot, Hanghang Tong, Jingrui He:
Deep Active Learning by Leveraging Training Dynamics. CoRR abs/2110.08611 (2021) - [i14]Lecheng Zheng, Dongqi Fu, Jingrui He:
Tackling Oversmoothing of GNNs with Contrastive Learning. CoRR abs/2110.13798 (2021) - [i13]Yao Zhou, Haonan Wang, Jingrui He, Haixun Wang:
From Intrinsic to Counterfactual: On the Explainability of Contextualized Recommender Systems. CoRR abs/2110.14844 (2021) - 2020
- [j21]Jiacheng Pan, Dongming Han, Fangzhou Guo, Dawei Zhou, Nan Cao, Jingrui He, Mingliang Xu, Wei Chen:
RCAnalyzer: visual analytics of rare categories in dynamic networks. Frontiers Inf. Technol. Electron. Eng. 21(4): 491-506 (2020) - [j20]Pei Yang, Qi Tan, Jingrui He:
Complex heterogeneity learning: A theoretical and empirical study. Pattern Recognit. 107: 107519 (2020) - [c92]Zhining Liu, Dawei Zhou, Yada Zhu, Jinjie Gu, Jingrui He:
Towards Fine-Grained Temporal Network Representation via Time-Reinforced Random Walk. AAAI 2020: 4973-4980 - [c91]Shane Roach, Connie Ni, Alexei Kopylov, Tsai-Ching Lu,