default search action
João Marques-Silva 0001
João P. Marques Silva – João Paulo Marques Silva
Person information
- affiliation: ICREA, University of Lleida, Catalunya, Spain
- affiliation (former): IRIT, CNRS, Toulouse, France
- affiliation (former): University of Toulouse, ANITI, Toulouse, France
- affiliation (former): University of Lisbon, Portugal
Other persons with the same name
- João Marques-Silva 0002 — Instituto Universitário de Lisboa, Lisbon, Portugal
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j62]Rosina O. Weber, Adam J. Johs, Prateek Goel, João Marques-Silva:
XAI is in trouble. AI Mag. 45(3): 300-316 (2024) - [j61]João Marques-Silva, Xuanxiang Huang:
Explainability Is Not a Game. Commun. ACM 67(7): 66-75 (2024) - [j60]Xuanxiang Huang, João Marques-Silva:
On the failings of Shapley values for explainability. Int. J. Approx. Reason. 171: 109112 (2024) - [j59]Ismaïl Baaj, Zied Bouraoui, Antoine Cornuéjols, Thierry Denoeux, Sébastien Destercke, Didier Dubois, Marie-Jeanne Lesot, João Marques-Silva, Jérôme Mengin, Henri Prade, Steven Schockaert, Mathieu Serrurier, Olivier Strauss, Christel Vrain:
Synergies between machine learning and reasoning - An introduction by the Kay R. Amel group. Int. J. Approx. Reason. 171: 109206 (2024) - [j58]Gianpiero Cabodi, Paolo E. Camurati, João Marques-Silva, Marco Palena, Paolo Pasini:
Optimizing Binary Decision Diagrams for Interpretable Machine Learning Classification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 43(10): 3083-3087 (2024) - [c214]Yacine Izza, Alexey Ignatiev, Peter J. Stuckey, João Marques-Silva:
Delivering Inflated Explanations. AAAI 2024: 12744-12753 - [c213]Yacine Izza, Kuldeep S. Meel, João Marques-Silva:
Locally-Minimal Probabilistic Explanations. ECAI 2024: 1092-1099 - [c212]Xuanxiang Huang, João Marques-Silva:
Updates on the Complexity of SHAP Scores. IJCAI 2024: 403-412 - [c211]João Marques-Silva:
Logic-Based Explainability: Past, Present and Future. ISoLA (4) 2024: 181-204 - [c210]Yacine Izza, Xuanxiang Huang, António Morgado, Jordi Planes, Alexey Ignatiev, João Marques-Silva:
Distance-Restricted Explanations: Theoretical Underpinnings & Efficient Implementation. KR 2024 - [i68]Olivier Letoffe, Xuanxiang Huang, João Marques-Silva:
On Correcting SHAP Scores. CoRR abs/2405.00076 (2024) - [i67]Yacine Izza, Xuanxiang Huang, António Morgado, Jordi Planes, Alexey Ignatiev, João Marques-Silva:
Distance-Restricted Explanations: Theoretical Underpinnings & Efficient Implementation. CoRR abs/2405.08297 (2024) - [i66]Olivier Letoffe, Xuanxiang Huang, Nicholas Asher, João Marques-Silva:
From SHAP Scores to Feature Importance Scores. CoRR abs/2405.11766 (2024) - [i65]João Marques-Silva:
Logic-Based Explainability: Past, Present & Future. CoRR abs/2406.11873 (2024) - [i64]João Marques-Silva, Carlos Mencía, Raúl Mencía:
The Sets of Power. CoRR abs/2410.07867 (2024) - [i63]Olivier Letoffe, Xuanxiang Huang, João Marques-Silva:
SHAP scores fail pervasively even when Lipschitz succeeds. CoRR abs/2412.13866 (2024) - 2023
- [j57]Martin C. Cooper, João Marques-Silva:
Tractability of explaining classifier decisions. Artif. Intell. 316: 103841 (2023) - [j56]João Marques-Silva, Alexey Ignatiev:
No silver bullet: interpretable ML models must be explained. Frontiers Artif. Intell. 6 (2023) - [j55]Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, João Marques-Silva:
On computing probabilistic abductive explanations. Int. J. Approx. Reason. 159: 108939 (2023) - [c209]Xuanxiang Huang, Yacine Izza, João Marques-Silva:
Solving Explainability Queries with Quantification: The Case of Feature Relevancy. AAAI 2023: 3996-4006 - [c208]Jinqiang Yu, Alexey Ignatiev, Peter J. Stuckey, Nina Narodytska, João Marques-Silva:
Eliminating the Impossible, Whatever Remains Must Be True: On Extracting and Applying Background Knowledge in the Context of Formal Explanations. AAAI 2023: 4123-4131 - [c207]Raúl Mencía, Carlos Mencía, João Marques-Silva:
Efficient Reasoning about Infeasible One Machine Sequencing. ICAPS 2023: 268-276 - [c206]Xuanxiang Huang, João Marques-Silva:
From Decision Trees to Explained Decision Sets. ECAI 2023: 1100-1108 - [c205]João Marques-Silva:
Disproving XAI Myths with Formal Methods - Initial Results. ICECCS 2023: 12-21 - [c204]Yacine Izza, Alexey Ignatiev, João Marques-Silva:
On Tackling Explanation Redundancy in Decision Trees (Extended Abstract). IJCAI 2023: 6900-6904 - [c203]Yacine Izza, João Marques-Silva:
On Computing Relevant Features for Explaining NBCs. ENIGMA@KR 2023: 75-86 - [c202]Clément Carbonnel, Martin C. Cooper, João Marques-Silva:
Tractable Explaining of Multivariate Decision Trees. KR 2023: 127-135 - [c201]Xuanxiang Huang, Martin C. Cooper, António Morgado, Jordi Planes, João Marques-Silva:
Feature Necessity & Relevancy in ML Classifier Explanations. TACAS (1) 2023: 167-186 - [c200]Aurélie Hurault, João Marques-Silva:
Certified Logic-Based Explainable AI - The Case of Monotonic Classifiers. TAP 2023: 51-67 - [i62]Xuanxiang Huang, João Marques-Silva:
The Inadequacy of Shapley Values for Explainability. CoRR abs/2302.08160 (2023) - [i61]João Marques-Silva:
Disproving XAI Myths with Formal Methods - Initial Results. CoRR abs/2306.01744 (2023) - [i60]Xuanxiang Huang, João Marques-Silva:
From Robustness to Explainability and Back Again. CoRR abs/2306.03048 (2023) - [i59]Yacine Izza, Alexey Ignatiev, Peter J. Stuckey, João Marques-Silva:
Delivering Inflated Explanations. CoRR abs/2306.15272 (2023) - [i58]Ramón Béjar, António Morgado, Jordi Planes, João Marques-Silva:
On Logic-Based Explainability with Partially Specified Inputs. CoRR abs/2306.15803 (2023) - [i57]João Marques-Silva, Xuanxiang Huang:
Explainability is NOT a Game. CoRR abs/2307.07514 (2023) - [i56]Xuanxiang Huang, João Marques-Silva:
A Refutation of Shapley Values for Explainability. CoRR abs/2309.03041 (2023) - [i55]Xuanxiang Huang, João Marques-Silva:
Refutation of Shapley Values for XAI - Additional Evidence. CoRR abs/2310.00416 (2023) - [i54]Yacine Izza, João Marques-Silva:
The Pros and Cons of Adversarial Robustness. CoRR abs/2312.10911 (2023) - [i53]Yacine Izza, Kuldeep S. Meel, João Marques-Silva:
Locally-Minimal Probabilistic Explanations. CoRR abs/2312.11831 (2023) - 2022
- [j54]Yacine Izza, Alexey Ignatiev, João Marques-Silva:
On Tackling Explanation Redundancy in Decision Trees. J. Artif. Intell. Res. 75: 261-321 (2022) - [c199]Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, João Marques-Silva:
Using MaxSAT for Efficient Explanations of Tree Ensembles. AAAI 2022: 3776-3785 - [c198]Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Martin C. Cooper, Nicholas Asher, João Marques-Silva:
Tractable Explanations for d-DNNF Classifiers. AAAI 2022: 5719-5728 - [c197]Aditya A. Shrotri, Nina Narodytska, Alexey Ignatiev, Kuldeep S. Meel, João Marques-Silva, Moshe Y. Vardi:
Constraint-Driven Explanations for Black-Box ML Models. AAAI 2022: 8304-8314 - [c196]João Marques-Silva, Alexey Ignatiev:
Delivering Trustworthy AI through Formal XAI. AAAI 2022: 12342-12350 - [c195]João Marques-Silva:
Logic-Based Explainability in Machine Learning. RW 2022: 24-104 - [i52]Xuanxiang Huang, João Marques-Silva:
On Deciding Feature Membership in Explanations of SDD & Related Classifiers. CoRR abs/2202.07553 (2022) - [i51]Yacine Izza, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, João Marques-Silva:
Provably Precise, Succinct and Efficient Explanations for Decision Trees. CoRR abs/2205.09569 (2022) - [i50]Yacine Izza, Alexey Ignatiev, João Marques-Silva:
On Tackling Explanation Redundancy in Decision Trees. CoRR abs/2205.09971 (2022) - [i49]Jinqiang Yu, Alexey Ignatiev, Peter J. Stuckey, Nina Narodytska, João Marques-Silva:
Eliminating The Impossible, Whatever Remains Must Be True. CoRR abs/2206.09551 (2022) - [i48]Yacine Izza, João Marques-Silva:
On Computing Relevant Features for Explaining NBCs. CoRR abs/2207.04748 (2022) - [i47]Xuanxiang Huang, Martin C. Cooper, António Morgado, Jordi Planes, João Marques-Silva:
Feature Necessity & Relevancy in ML Classifier Explanations. CoRR abs/2210.15675 (2022) - [i46]João Marques-Silva:
Logic-Based Explainability in Machine Learning. CoRR abs/2211.00541 (2022) - [i45]Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, João Marques-Silva:
On Computing Probabilistic Abductive Explanations. CoRR abs/2212.05990 (2022) - 2021
- [j53]Maria Luisa Bonet, Sam Buss, Alexey Ignatiev, António Morgado, João Marques-Silva:
Propositional proof systems based on maximum satisfiability. Artif. Intell. 300: 103552 (2021) - [j52]Daniel Gibert, Carles Mateu, Jordi Planes, João Marques-Silva:
Auditing static machine learning anti-Malware tools against metamorphic attacks. Comput. Secur. 102: 102159 (2021) - [c194]Alexey Ignatiev, Edward Lam, Peter J. Stuckey, João Marques-Silva:
A Scalable Two Stage Approach to Computing Optimal Decision Sets. AAAI 2021: 3806-3814 - [c193]João Marques-Silva:
Automated Reasoning in Explainable AI. CCIA 2021: 4 - [c192]Martin C. Cooper, João Marques-Silva:
On the Tractability of Explaining Decisions of Classifiers. CP 2021: 21:1-21:18 - [c191]Gianpiero Cabodi, Paolo E. Camurati, Alexey Ignatiev, João Marques-Silva, Marco Palena, Paolo Pasini:
Optimizing Binary Decision Diagrams for Interpretable Machine Learning Classification. DATE 2021: 1122-1125 - [c190]João Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, Nina Narodytska:
Explanations for Monotonic Classifiers. ICML 2021: 7469-7479 - [c189]Yacine Izza, João Marques-Silva:
On Explaining Random Forests with SAT. IJCAI 2021: 2584-2591 - [c188]Alexey Ignatiev, João Marques-Silva, Nina Narodytska, Peter J. Stuckey:
Reasoning-Based Learning of Interpretable ML Models. IJCAI 2021: 4458-4465 - [c187]Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, João Marques-Silva:
On Efficiently Explaining Graph-Based Classifiers. KR 2021: 356-367 - [c186]Alexey Ignatiev, João Marques-Silva:
SAT-Based Rigorous Explanations for Decision Lists. SAT 2021: 251-269 - [c185]Stepan Kochemazov, Alexey Ignatiev, João Marques-Silva:
Assessing Progress in SAT Solvers Through the Lens of Incremental SAT. SAT 2021: 280-298 - [p6]João Marques-Silva, Inês Lynce, Sharad Malik:
Conflict-Driven Clause Learning SAT Solvers. Handbook of Satisfiability 2021: 133-182 - [i44]Alexey Ignatiev, Edward Lam, Peter J. Stuckey, João Marques-Silva:
A Scalable Two Stage Approach to Computing Optimal Decision Sets. CoRR abs/2102.01904 (2021) - [i43]Takfarinas Saber, Anthony Ventresque, João Marques-Silva, James Thorburn, Liam Murphy:
MILP for the Multi-objective VM Reassignment Problem. CoRR abs/2103.10410 (2021) - [i42]Alexey Ignatiev, João Marques-Silva:
SAT-Based Rigorous Explanations for Decision Lists. CoRR abs/2105.06782 (2021) - [i41]Yacine Izza, João Marques-Silva:
On Explaining Random Forests with SAT. CoRR abs/2105.10278 (2021) - [i40]João Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, Nina Narodytska:
Explanations for Monotonic Classifiers. CoRR abs/2106.00154 (2021) - [i39]Yacine Izza, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, João Marques-Silva:
Efficient Explanations With Relevant Sets. CoRR abs/2106.00546 (2021) - [i38]Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, João Marques-Silva:
On Efficiently Explaining Graph-Based Classifiers. CoRR abs/2106.01350 (2021) - [i37]Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Martin C. Cooper, Nicholas Asher, João Marques-Silva:
Efficient Explanations for Knowledge Compilation Languages. CoRR abs/2107.01654 (2021) - [i36]João Marques-Silva, Rafael Peñaloza, Uli Sattler:
Extending the Synergies Between SAT and Description Logics (Dagstuhl Seminar 21361). Dagstuhl Reports 11(8): 1-10 (2021) - 2020
- [j51]Mario Alviano, Carmine Dodaro, João Marques-Silva, Francesco Ricca:
Optimum stable model search: algorithms and implementation. J. Log. Comput. 30(4): 863-897 (2020) - [c184]Alexey Ignatiev, Nina Narodytska, Nicholas Asher, João Marques-Silva:
From Contrastive to Abductive Explanations and Back Again. AI*IA 2020: 335-355 - [c183]Alexey Ignatiev, Martin C. Cooper, Mohamed Siala, Emmanuel Hebrard, João Marques-Silva:
Towards Formal Fairness in Machine Learning. CP 2020: 846-867 - [c182]Oleg Zaikin, Alexey Ignatiev, João Marques-Silva:
Branch Location Problems with Maximum Satisfiability. ECAI 2020: 379-386 - [c181]João Marques-Silva, Carlos Mencía:
Reasoning About Inconsistent Formulas. IJCAI 2020: 4899-4906 - [c180]João Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, Nina Narodytska:
Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time and Delay. NeurIPS 2020 - [c179]Carlos Mencía, João Marques-Silva:
Reasoning About Strong Inconsistency in ASP. SAT 2020: 332-342 - [i35]João Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, Nina Narodytska:
Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time and Delay. CoRR abs/2008.05803 (2020) - [i34]Yacine Izza, Alexey Ignatiev, João Marques-Silva:
On Explaining Decision Trees. CoRR abs/2010.11034 (2020) - [i33]Alexey Ignatiev, Nina Narodytska, Nicholas Asher, João Marques-Silva:
On Relating 'Why?' and 'Why Not?' Explanations. CoRR abs/2012.11067 (2020)
2010 – 2019
- 2019
- [j50]Luís Cruz-Filipe, João Marques-Silva, Peter Schneider-Kamp:
Formally Verifying the Solution to the Boolean Pythagorean Triples Problem. J. Autom. Reason. 63(3): 695-722 (2019) - [j49]Alexey Ignatiev, António Morgado, João Marques-Silva:
RC2: an Efficient MaxSAT Solver. J. Satisf. Boolean Model. Comput. 11(1): 53-64 (2019) - [c178]Alexey Ignatiev, Nina Narodytska, João Marques-Silva:
Abduction-Based Explanations for Machine Learning Models. AAAI 2019: 1511-1519 - [c177]Carlos Mencía, João Marques-Silva:
Computing Shortest Resolution Proofs. EPIA (2) 2019: 539-551 - [c176]Alexey Ignatiev, António Morgado, Georg Weissenbacher, João Marques-Silva:
Model-Based Diagnosis with Multiple Observations. IJCAI 2019: 1108-1115 - [c175]Ilya Zakirzyanov, António Morgado, Alexey Ignatiev, Vladimir Ulyantsev, João Marques-Silva:
Efficient Symmetry Breaking for SAT-Based Minimum DFA Inference. LATA 2019: 159-173 - [c174]Alexey Ignatiev, Nina Narodytska, João Marques-Silva:
On Relating Explanations and Adversarial Examples. NeurIPS 2019: 15857-15867 - [c173]Carlos Mencía, Oliver Kullmann, Alexey Ignatiev, João Marques-Silva:
On Computing the Union of MUSes. SAT 2019: 211-221 - [c172]António Morgado, Alexey Ignatiev, Maria Luisa Bonet, João Marques-Silva, Sam Buss:
DRMaxSAT with MaxHS: First Contact. SAT 2019: 239-249 - [c171]Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, João Marques-Silva:
Assessing Heuristic Machine Learning Explanations with Model Counting. SAT 2019: 267-278 - [i32]Alexey Ignatiev, Nina Narodytska, João Marques-Silva:
On Validating, Repairing and Refining Heuristic ML Explanations. CoRR abs/1907.02509 (2019) - [i31]Zied Bouraoui, Antoine Cornuéjols, Thierry Denoeux, Sébastien Destercke, Didier Dubois, Romain Guillaume, João Marques-Silva, Jérôme Mengin, Henri Prade, Steven Schockaert, Mathieu Serrurier, Christel Vrain:
From Shallow to Deep Interactions Between Knowledge Representation, Reasoning and Machine Learning (Kay R. Amel group). CoRR abs/1912.06612 (2019) - 2018
- [c170]Maria Luisa Bonet, Sam Buss, Alexey Ignatiev, João Marques-Silva, António Morgado:
MaxSAT Resolution With the Dual Rail Encoding. AAAI 2018: 6565-6572 - [c169]Alessandro Previti, Carlos Mencía, Matti Järvisalo, João Marques-Silva:
Premise Set Caching for Enumerating Minimal Correction Subsets. AAAI 2018: 6633-6640 - [c168]Alexey Ignatiev, Filipe Pereira, Nina Narodytska, João Marques-Silva:
A SAT-Based Approach to Learn Explainable Decision Sets. IJCAR 2018: 627-645 - [c167]João Marques-Silva:
Computing with SAT Oracles: Past, Present and Future. CiE 2018: 264-276 - [c166]Nina Narodytska, Alexey Ignatiev, Filipe Pereira, João Marques-Silva:
Learning Optimal Decision Trees with SAT. IJCAI 2018: 1362-1368 - [c165]Alexey Ignatiev, António Morgado, João Marques-Silva:
PySAT: A Python Toolkit for Prototyping with SAT Oracles. SAT 2018: 428-437 - [p5]João Marques-Silva, Sharad Malik:
Propositional SAT Solving. Handbook of Model Checking 2018: 247-275 - [i30]Alexey Ignatiev, Nina Narodytska, João Marques-Silva:
Abduction-Based Explanations for Machine Learning Models. CoRR abs/1811.10656 (2018) - 2017
- [j48]João Marques-Silva, Mikolás Janota, Carlos Mencía:
Minimal sets on propositional formulae. Problems and reductions. Artif. Intell. 252: 22-50 (2017) - [j47]Takfarinas Saber, João Marques-Silva, James Thorburn, Anthony Ventresque:
Exact and Hybrid Solutions for the Multi-Objective VM Reassignment Problem. Int. J. Artif. Intell. Tools 26(1): 1760004:1-1760004:36 (2017) - [c164]Mikolás Janota, João Marques-Silva:
On Minimal Corrections in ASP. RCRA@AI*IA 2017: 45-54 - [c163]Alexey Ignatiev, João Marques-Silva, Carlos Mencía, Rafael Peñaloza:
Debugging EL+ Ontologies through Horn MUS Enumeration. Description Logics 2017 - [c162]Mikolás Janota, João Marques-Silva:
An Achilles' Heel of Term-Resolution. EPIA 2017: 670-680 - [c161]João Marques-Silva, Alexey Ignatiev, António Morgado:
Horn Maximum Satisfiability: Reductions, Algorithms and Applications. EPIA 2017: 681-694 - [c160]Rafael Peñaloza, Carlos Mencía, Alexey Ignatiev, João Marques-Silva:
Lean Kernels in Description Logics. ESWC (1) 2017: 518-533 - [c159]Alessandro Previti, Alexey Ignatiev, Matti Järvisalo, João Marques-Silva:
On Computing Generalized Backbones. ICTAI 2017: 1050-1056 - [c158]Alexey Ignatiev, António Morgado, João Marques-Silva:
Cardinality Encodings for Graph Optimization Problems. IJCAI 2017: 652-658 - [c157]Alexey Ignatiev, António Morgado, João Marques-Silva:
On Tackling the Limits of Resolution in SAT Solving. SAT 2017: 164-183 - [c156]Alessandro Previti, Carlos Mencía, Matti Järvisalo, João Marques-Silva:
Improving MCS Enumeration via Caching. SAT 2017: 184-194 - [c155]Luís Cruz-Filipe, João Marques-Silva, Peter Schneider-Kamp:
Efficient Certified Resolution Proof Checking. TACAS (1) 2017: 118-135 - [i29]Alexey Ignatiev, António Morgado, João Marques-Silva:
On Tackling the Limits of Resolution in SAT Solving. CoRR abs/1705.01477 (2017) - [i28]João Marques-Silva, Alexey Ignatiev, António Morgado:
Horn Maximum Satisfiability: Reductions, Algorithms & Applications. CoRR abs/1705.05335 (2017) - [i27]Alexey Ignatiev, António Morgado, João Marques-Silva:
Model Based Diagnosis of Multiple Observations with Implicit Hitting Sets. CoRR abs/1707.01972 (2017) - 2016
- [j46]Mikolás Janota, João Marques-Silva:
On the query complexity of selecting minimal sets for monotone predicates. Artif. Intell. 233: 73-83 (2016) - [j45]Mikolás Janota, William Klieber, João Marques-Silva, Edmund M. Clarke:
Solving QBF with counterexample guided refinement. Artif. Intell. 234: 1-25 (2016) - [j44]Alexey Ignatiev, António Morgado, Jordi Planes, João Marques-Silva:
Maximal falsifiability. AI Commun. 29(2): 351-370 (2016) - [j43]Stefano V. Albrecht, Bruno Bouchard, John S. Brownstein, David L. Buckeridge, Cornelia Caragea, Kevin M. Carter, Adnan Darwiche, Blaz Fortuna, Yannick Francillette, Sébastien Gaboury, C. Lee Giles, Marko Grobelnik, Estevam R. Hruschka Jr., Jeffrey O. Kephart, Parisa Kordjamshidi, Viliam Lisý, Daniele Magazzeni, João Marques-Silva, Pierre Marquis, David R. Martinez, Marek P. Michalowski, Arash Shaban-Nejad, Zeinab Noorian, Enrico Pontelli, Alex Rogers, Stephanie Rosenthal, Dan Roth, Arunesh Sinha, William W. Streilein, Sylvie Thiébaux, Tran Cao Son, Byron C. Wallace, Toby Walsh, Michael Witbrock, Jie Zhang:
Reports of the 2016 AAAI Workshop Program. AI Mag. 37(3): 99-108 (2016) - [j42]Mark H. Liffiton, Alessandro Previti,