default search action
Ekaterina Komendantskaya
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c53]Haoze Wu, Omri Isac, Aleksandar Zeljic, Teruhiro Tagomori, Matthew L. Daggitt, Wen Kokke, Idan Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang, Ekaterina Komendantskaya, Guy Katz, Clark W. Barrett:
Marabou 2.0: A Versatile Formal Analyzer of Neural Networks. CAV (2) 2024: 249-264 - [c52]Parth Padalkar, Natalia Slusarz, Ekaterina Komendantskaya, Gopal Gupta:
A Neurosymbolic Framework for Bias Correction in Convolutional Neural Networks. ICLP Workshops 2024 - [c51]Reynald Affeldt, Alessandro Bruni, Ekaterina Komendantskaya, Natalia Slusarz, Kathrin Stark:
Taming Differentiable Logics with Coq Formalisation. ITP 2024: 4:1-4:19 - [i46]Matthew L. Daggitt, Wen Kokke, Robert Atkey, Natalia Slusarz, Luca Arnaboldi, Ekaterina Komendantskaya:
Vehicle: Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs. CoRR abs/2401.06379 (2024) - [i45]Haoze Wu, Omri Isac, Aleksandar Zeljic, Teruhiro Tagomori, Matthew L. Daggitt, Wen Kokke, Idan Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang, Ekaterina Komendantskaya, Guy Katz, Clark W. Barrett:
Marabou 2.0: A Versatile Formal Analyzer of Neural Networks. CoRR abs/2401.14461 (2024) - [i44]Marco Casadio, Tanvi Dinkar, Ekaterina Komendantskaya, Luca Arnaboldi, Omri Isac, Matthew L. Daggitt, Guy Katz, Verena Rieser, Oliver Lemon:
NLP Verification: Towards a General Methodology for Certifying Robustness. CoRR abs/2403.10144 (2024) - [i43]Reynald Affeldt, Alessandro Bruni, Ekaterina Komendantskaya, Natalia Slusarz, Kathrin Stark:
Taming Differentiable Logics with Coq Formalisation. CoRR abs/2403.13700 (2024) - [i42]Remi Desmartin, Omri Isac, Ekaterina Komendantskaya, Kathrin Stark, Grant O. Passmore, Guy Katz:
A Certified Proof Checker for Deep Neural Network Verification. CoRR abs/2405.10611 (2024) - [i41]Parth Padalkar, Natalia Slusarz, Ekaterina Komendantskaya, Gopal Gupta:
A Neurosymbolic Framework for Bias Correction in CNNs. CoRR abs/2405.15886 (2024) - 2023
- [c50]Vaishak Belle, Michael Fisher, Alessandra Russo, Ekaterina Komendantskaya, Alistair Nottle:
Neuro-Symbolic AI + Agent Systems: A First Reflection on Trends, Opportunities and Challenges. AAMAS Workshops 2023: 180-200 - [c49]Matthew L. Daggitt, Wen Kokke, Ekaterina Komendantskaya, Robert Atkey, Luca Arnaboldi, Natalia Slusarz, Marco Casadio, Ben Coke, Jeonghyeon Lee:
The Vehicle Tutorial: Neural Network Verification with Vehicle. FoMLAS@CAV 2023: 1-5 - [c48]Marco Casadio, Luca Arnaboldi, Matthew L. Daggitt, Omri Isac, Tanvi Dinkar, Daniel Kienitz, Verena Rieser, Ekaterina Komendantskaya:
ANTONIO: Towards a Systematic Method of Generating NLP Benchmarks for Verification. FoMLAS@CAV 2023: 59-70 - [c47]Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, Luca Arnaboldi:
Compiling Higher-Order Specifications to SMT Solvers: How to Deal with Rejection Constructively. CPP 2023: 102-120 - [c46]Remi Desmartin, Omri Isac, Grant O. Passmore, Kathrin Stark, Ekaterina Komendantskaya, Guy Katz:
Towards a Certified Proof Checker for Deep Neural Network Verification. LOPSTR 2023: 198-209 - [c45]Natalia Slusarz, Ekaterina Komendantskaya, Matthew L. Daggitt, Robert J. Stewart, Kathrin Stark:
Logic of Differentiable Logics: Towards a Uniform Semantics of DL. LPAR 2023: 473-493 - [i40]Natalia Slusarz, Ekaterina Komendantskaya, Matthew L. Daggitt, Robert J. Stewart, Kathrin Stark:
Logic of Differentiable Logics: Towards a Uniform Semantics of DL. CoRR abs/2303.10650 (2023) - [i39]Marco Casadio, Luca Arnaboldi, Matthew L. Daggitt, Omri Isac, Tanvi Dinkar, Daniel Kienitz, Verena Rieser, Ekaterina Komendantskaya:
ANTONIO: Towards a Systematic Method of Generating NLP Benchmarks for Verification. CoRR abs/2305.04003 (2023) - [i38]Remi Desmartin, Omri Isac, Grant O. Passmore, Kathrin Stark, Guy Katz, Ekaterina Komendantskaya:
Towards a Certified Proof Checker for Deep Neural Network Verification. CoRR abs/2307.06299 (2023) - 2022
- [c44]Daniel Kienitz, Ekaterina Komendantskaya, Michael A. Lones:
The Effect of Manifold Entanglement and Intrinsic Dimensionality on Learning. AAAI 2022: 7160-7167 - [c43]Daniel Kienitz, Ekaterina Komendantskaya, Michael A. Lones:
Comparing Complexities of Decision Boundaries for Robust Training: A Universal Approach. ACCV (6) 2022: 627-645 - [c42]Natalia Slusarz, Ekaterina Komendantskaya, Matthew L. Daggitt, Robert J. Stewart:
Differentiable Logics for Neural Network Training and Verification. NSV/FoMLAS@CAV 2022: 67-77 - [c41]Remi Desmartin, Grant O. Passmore, Ekaterina Komendantskaya:
Neural Networks in Imandra: Matrix Representation as a Verification Choice. NSV/FoMLAS@CAV 2022: 78-95 - [c40]Marco Casadio, Ekaterina Komendantskaya, Matthew L. Daggitt, Wen Kokke, Guy Katz, Guy Amir, Idan Refaeli:
Neural Network Robustness as a Verification Property: A Principled Case Study. CAV (1) 2022: 219-231 - [c39]Remi Desmartin, Grant O. Passmore, Ekaterina Komendantskaya, Matthew L. Daggitt:
CheckINN: Wide Range Neural Network Verification in Imandra. PPDP 2022: 3:1-3:14 - [e6]Ekaterina Komendantskaya:
Mathematics of Program Construction - 14th International Conference, MPC 2022, Tbilisi, Georgia, September 26-28, 2022, Proceedings. Lecture Notes in Computer Science 13544, Springer 2022, ISBN 978-3-031-16911-3 [contents] - [i37]Matthew L. Daggitt, Wen Kokke, Robert Atkey, Luca Arnaboldi, Ekaterina Komendantskaya:
Vehicle: Interfacing Neural Network Verifiers with Interactive Theorem Provers. CoRR abs/2202.05207 (2022) - [i36]Remi Desmartin, Grant O. Passmore, Ekaterina Komendantskaya:
Neural Networks in Imandra: Matrix Representation as a Verification Choice. CoRR abs/2205.09556 (2022) - [i35]Marco Casadio, Ekaterina Komendantskaya, Verena Rieser, Matthew L. Daggitt, Daniel Kienitz, Luca Arnaboldi, Wen Kokke:
Why Robust Natural Language Understanding is a Challenge. CoRR abs/2206.14575 (2022) - [i34]Natalia Slusarz, Ekaterina Komendantskaya, Matthew L. Daggitt, Robert J. Stewart:
Differentiable Logics for Neural Network Training and Verification. CoRR abs/2207.06741 (2022) - [i33]Remi Desmartin, Grant O. Passmore, Ekaterina Komendantskaya, Matthew L. Daggitt:
CheckINN: Wide Range Neural Network Verification in Imandra (Extended). CoRR abs/2207.10562 (2022) - 2021
- [c38]Alasdair Hill, Ekaterina Komendantskaya, Matthew L. Daggitt, Ronald P. A. Petrick:
Actions you can handle: dependent types for AI plans. TyDe@ICFP 2021: 1-13 - [i32]Marco Casadio, Matthew L. Daggitt, Ekaterina Komendantskaya, Wen Kokke, Daniel Kienitz, Rob Stewart:
Property-driven Training: All You (N)Ever Wanted to Know About. CoRR abs/2104.01396 (2021) - [i31]Alasdair Hill, Ekaterina Komendantskaya, Matthew L. Daggitt, Ronald P. A. Petrick:
Actions You Can Handle: Dependent Types for AI Plans. CoRR abs/2105.11267 (2021) - 2020
- [j8]Ekaterina Komendantskaya, Dmitry Rozplokhas, Henning Basold:
The New Normal: We Cannot Eliminate Cuts in Coinductive Calculi, But We Can Explore Them. Theory Pract. Log. Program. 20(6): 990-1005 (2020) - [c37]Wen Kokke, Ekaterina Komendantskaya, Daniel Kienitz, Robert Atkey, David Aspinall:
Neural Networks, Secure by Construction - An Exploration of Refinement Types. APLAS 2020: 67-85 - [c36]Pascal Bacchus, Robert J. Stewart, Ekaterina Komendantskaya:
Accuracy, Training Time and Hardware Efficiency Trade-Offs for Quantized Neural Networks on FPGAs. ARC 2020: 121-135 - [c35]Kirsty Duncan, Ekaterina Komendantskaya, Robert J. Stewart, Michael A. Lones:
Relative Robustness of Quantized Neural Networks Against Adversarial Attacks. IJCNN 2020: 1-8 - [c34]Ekaterina Komendantskaya, Wen Kokke, Daniel Kienitz:
Continuous Verification of Machine Learning: a Declarative Programming Approach. PPDP 2020: 1:1-1:3 - [c33]Alasdair Hill, Ekaterina Komendantskaya, Ronald P. A. Petrick:
Proof-Carrying Plans: a Resource Logic for AI Planning. PPDP 2020: 14:1-14:13 - [e5]Ekaterina Komendantskaya, Yanhong Annie Liu:
Practical Aspects of Declarative Languages - 22nd International Symposium, PADL 2020, New Orleans, LA, USA, January 20-21, 2020, Proceedings. Lecture Notes in Computer Science 12007, Springer 2020, ISBN 978-3-030-39196-6 [contents] - [i30]Ekaterina Komendantskaya, Dmitry Rozplokhas, Henning Basold:
The New Normal: We Cannot Eliminate Cuts in Coinductive Calculi, But We Can Explore Them. CoRR abs/2008.03714 (2020) - [i29]Alasdair Hill, Ekaterina Komendantskaya, Ronald P. A. Petrick:
Proof-Carrying Plans: a Resource Logic for AI Planning. CoRR abs/2008.04165 (2020)
2010 – 2019
- 2019
- [c32]Henning Basold, Ekaterina Komendantskaya, Yue Li:
Coinduction in Uniform: Foundations for Corecursive Proof Search with Horn Clauses. ESOP 2019: 783-813 - [c31]Christopher Schwaab, Ekaterina Komendantskaya, Alasdair Hill, Frantisek Farka, Ronald P. A. Petrick, Joe B. Wells, Kevin Hammond:
Proof-Carrying Plans. PADL 2019: 204-220 - [e4]Ekaterina Komendantskaya:
Proceedings of the 21st International Symposium on Principles and Practice of Programming Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019. ACM 2019, ISBN 978-1-4503-7249-7 [contents] - [i28]Ekaterina Komendantskaya, Yue Li:
Coinductive Uniform Proofs. CoRR abs/1903.07371 (2019) - [i27]Ekaterina Komendantskaya, Rob Stewart, Kirsty Duncan, Daniel Kienitz, Pierre Le Hen, Pascal Bacchus:
Neural Network Verification for the Masses (of AI graduates). CoRR abs/1907.01297 (2019) - 2018
- [j7]Ekaterina Komendantskaya, John Power:
Logic programming: Laxness and saturation. J. Log. Algebraic Methods Program. 101: 1-21 (2018) - [j6]Frantisek Farka, Ekaterina Komendantskaya, Kevin Hammond:
Proof-relevant Horn Clauses for Dependent Type Inference and Term Synthesis. Theory Pract. Log. Program. 18(3-4): 484-501 (2018) - [c30]Ekaterina Komendantskaya, Yue Li:
Towards Coinductive Theory Exploration in Horn Clause Logic: Position Paper. HCVS 2018: 27-33 - [i26]Frantisek Farka, Ekaterina Komendantskaya, Kevin Hammond:
Proof-relevant Horn Clauses for Dependent Type Inference and Term Synthesis. CoRR abs/1804.11250 (2018) - [i25]Henning Basold, Ekaterina Komendantskaya, Yue Li:
Coinduction in Uniform: Foundations for Corecursive Proof Search with Horn Clauses. CoRR abs/1811.07644 (2018) - 2017
- [j5]Peng Fu, Ekaterina Komendantskaya:
Operational semantics of resolution and productivity in Horn clause logic. Formal Aspects Comput. 29(3): 453-474 (2017) - [j4]Ekaterina Komendantskaya, Yue Li:
Productive corecursion in logic programming. Theory Pract. Log. Program. 17(5-6): 906-923 (2017) - [c29]Ekaterina Komendantskaya, Jónathan Heras:
Proof Mining with Dependent Types. CICM 2017: 303-318 - [e3]Ekaterina Komendantskaya, John Power:
Proceedings of the First Workshop on Coalgebra, Horn Clause Logic Programming and Types, CoALP-Ty 2016, Edinburgh, UK, 28-29 November 2016. EPTCS 258, 2017 [contents] - [i24]Ekaterina Komendantskaya, Jónathan Heras:
Proof Mining with Dependent Types. CoRR abs/1705.04680 (2017) - [i23]Ekaterina Komendantskaya, Yue Li:
Productive Corecursion in Logic Programming. CoRR abs/1707.01541 (2017) - 2016
- [j3]Ekaterina Komendantskaya, John Power, Martin Schmidt:
Coalgebraic logic programming: from Semantics to Implementation. J. Log. Comput. 26(2): 745-783 (2016) - [c28]Ekaterina Komendantskaya, John Power:
Category Theoretic Semantics for Theorem Proving in Logic Programming: Embracing the Laxness. CMCS 2016: 94-113 - [c27]Peng Fu, Ekaterina Komendantskaya, Tom Schrijvers, Andrew Pond:
Proof Relevant Corecursive Resolution. FLOPS 2016: 126-143 - [c26]Ekaterina Komendantskaya, Patricia Johann, Martin Schmidt:
A Productivity Checker for Logic Programming. LOPSTR 2016: 168-186 - [c25]Frantisek Farka, Ekaterina Komendantskaya, Kevin Hammond:
Coinductive Soundness of Corecursive Type Class Resolution. LOPSTR 2016: 311-327 - [c24]Luca Franceschini, Davide Ancona, Ekaterina Komendantskaya:
Structural Resolution for Abstract Compilation of Object-Oriented Languages. CoALP-Ty 2016: 19-35 - [i22]Ekaterina Komendantskaya, John Power:
Category theoretic semantics for theorem proving in logic programming: embracing the laxness. CoRR abs/1602.05400 (2016) - [i21]Peng Fu, Ekaterina Komendantskaya:
Operational Semantics of Resolution in Horn Clause Logic. CoRR abs/1604.04114 (2016) - [i20]Ekaterina Komendantskaya, Patricia Johann, Martin Schmidt:
A Productivity Checker for Logic Programming. CoRR abs/1608.04415 (2016) - [i19]Frantisek Farka, Ekaterina Komendantskaya, Kevin Hammond, Peng Fu:
Coinductive Soundness of Corecursive Type Class Resolution. CoRR abs/1608.05233 (2016) - [i18]Ekaterina Komendantskaya, John Power:
Logic programming: laxness and saturation. CoRR abs/1608.07708 (2016) - [i17]Ekaterina Komendantskaya, Frantisek Farka:
CoALP-Ty'16. CoRR abs/1612.03032 (2016) - 2015
- [c23]Patricia Johann, Ekaterina Komendantskaya, Vladimir Komendantskiy:
Structural Resolution for Logic Programming. ICLP (Technical Communications) 2015 - [c22]Peng Fu, Ekaterina Komendantskaya:
A Type-Theoretic Approach to Resolution. LOPSTR 2015: 91-106 - [i16]Peng Fu, Ekaterina Komendantskaya:
A Type-Theoretic Approach to Structural Resolution. CoRR abs/1506.06166 (2015) - [i15]Patricia Johann, Ekaterina Komendantskaya, Vladimir Komendantskiy:
Structural Resolution for Logic Programming. CoRR abs/1507.06010 (2015) - [i14]Peng Fu, Ekaterina Komendantskaya:
A Type-Theoretic Approach to Resolution. CoRR abs/1510.04661 (2015) - [i13]Ekaterina Komendantskaya, Patricia Johann:
Structural Resolution: a Framework for Coinductive Proof Search and Proof Construction in Horn Clause Logic. CoRR abs/1511.07865 (2015) - [i12]Peng Fu, Ekaterina Komendantskaya, Tom Schrijvers, Andrew Pond:
Proof Relevant Corecursive Resolution. CoRR abs/1511.09394 (2015) - 2014
- [j2]Jónathan Heras, Ekaterina Komendantskaya:
Recycling Proof Patterns in Coq: Case Studies. Math. Comput. Sci. 8(1): 99-116 (2014) - [c21]Jónathan Heras, Ekaterina Komendantskaya:
ACL2(ml): Machine-Learning for ACL2. ACL2 2014: 61-75 - [i11]Jónathan Heras, Ekaterina Komendantskaya:
Proof Pattern Search in Coq/SSReflect. CoRR abs/1402.0081 (2014) - [i10]Jónathan Heras, Ekaterina Komendantskaya, Martin Schmidt:
Guarding (Co)Recursion in Coalgebraic Logic Programming. CoRR abs/1402.3690 (2014) - [i9]Jónathan Heras, Ekaterina Komendantskaya:
HoTT formalisation in Coq: Dependency Graphs \& ML4PG. CoRR abs/1403.2531 (2014) - 2013
- [c20]Jónathan Heras, Ekaterina Komendantskaya, Moa Johansson, Ewen Maclean:
Proof-Pattern Recognition and Lemma Discovery in ACL2. LPAR 2013: 389-406 - [c19]Jónathan Heras, Ekaterina Komendantskaya:
ML4PG in Computer Algebra Verification. MKM/Calculemus/DML 2013: 354-358 - [c18]Ekaterina Komendantskaya, Martin Schmidt, Jónathan Heras:
Exploiting Parallelism in Coalgebraic Logic Programming. WACT 2013: 121-148 - [i8]Jónathan Heras, Ekaterina Komendantskaya:
Statistical Proof-Patterns in Coq/SSReflect. CoRR abs/1301.6039 (2013) - [i7]Jónathan Heras, Ekaterina Komendantskaya:
ML4PG: proof-mining in Coq. CoRR abs/1302.6421 (2013) - [i6]Jónathan Heras, Ekaterina Komendantskaya:
Statistical Proof Pattern Recognition: Automated or Interactive? CoRR abs/1303.1419 (2013) - [i5]Jónathan Heras, Ekaterina Komendantskaya, Moa Johansson, Ewen Maclean:
Proof-Pattern Recognition in ACL2. CoRR abs/1308.1780 (2013) - [i4]Ekaterina Komendantskaya, Martin Schmidt, Jónathan Heras:
Exploiting Parallelism in Coalgebraic Logic Programming. CoRR abs/1312.4454 (2013) - [i3]Ekaterina Komendantskaya, John Power, Martin Schmidt:
Coalgebraic Logic Programming: from Semantics to Implementation. CoRR abs/1312.6568 (2013) - 2012
- [c17]Ekaterina Komendantskaya, Kacper Lichota:
Neural Networks for Proof-Pattern Recognition. ICANN (2) 2012: 427-434 - [c16]Ekaterina Komendantskaya, Jónathan Heras, Gudmund Grov:
Machine Learning in Proof General: Interfacing Interfaces. UITP 2012: 15-41 - [e2]Ekaterina Komendantskaya, Ana Bove, Milad Niqui:
Partiality and Recursion in Interactive Theorem Provers, PAR@ITP 2010, Edinburgh, UK, July 15, 2010. EPiC Series 5, EasyChair 2012 [contents] - 2011
- [j1]Ekaterina Komendantskaya:
Unification neural networks: unification by error-correction learning. Log. J. IGPL 19(6): 821-847 (2011) - [c15]Ekaterina Komendantskaya, John Power:
Coalgebraic Semantics for Derivations in Logic Programming. CALCO 2011: 268-282 - [c14]Ekaterina Komendantskaya, John Power:
Coalgebraic Derivations in Logic Programming. CSL 2011: 352-366 - [c13]Ekaterina Komendantskaya:
Machine Learning Coalgebraic Proofs. ILP (Late Breaking Papers) 2011: 191-198 - [c12]Ekaterina Komendantskaya, Qiming Zhang:
SHERLOCK - An Interface for Neuro-Symbolic Networks. NeSy 2011: 39-40 - 2010
- [c11]Ekaterina Komendantskaya, Guy McCusker, John Power:
Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming. AMAST 2010: 111-127 - [c10]Ekaterina Komendantskaya, Krysia Broda, Artur S. d'Avila Garcez:
Neuro-symbolic Representation of Logic Programs Defining Infinite Sets. ICANN (1) 2010: 301-304 - [e1]Ana Bove, Ekaterina Komendantskaya, Milad Niqui:
Proceedings Workshop on Partiality and Recursion in Interactive Theorem Provers, PAR 2010, Edinburgh, UK, 15th July 2010. EPTCS 43, 2010 [contents]
2000 – 2009
- 2009
- [c9]Ekaterina Komendantskaya:
Parallel Rewriting in Neural Networks. IJCCI 2009: 452-458 - [c8]Ekaterina Komendantskaya:
Neurons or Symbols - Why does OR Remain Exclusive?. IJCCI 2009: 502-507 - [i2]Yves Bertot, Ekaterina Komendantskaya:
Using Structural Recursion for Corecursion. CoRR abs/0903.3850 (2009) - 2008
- [c7]Ekaterina Komendantskaya, John Power:
Fibrational Semantics for Many-Valued Logic Programs: Grounds for Non-Groundness. JELIA 2008: 258-271 - [c6]Ekaterina Komendantskaya:
Unification by Error-Correction. NeSy 2008 - [c5]Yves Bertot, Ekaterina Komendantskaya:
Using Structural Recursion for Corecursion. TYPES 2008: 220-236 - [c4]Yves Bertot, Ekaterina Komendantskaya:
Inductive and Coinductive Components of Corecursive Functions in Coq. CMCS 2008: 25-47 - [i1]Yves Bertot, Ekaterina Komendantskaya:
Inductive and Coinductive Components of Corecursive Functions in Coq. CoRR abs/0807.1524 (2008) - 2007
- [c3]Ekaterina Komendantskaya:
First-order deduction in neural networks. LATA 2007: 307-318 - [c2]Ekaterina Komendantskaya:
A Sequent Calculus for Bilattice-Based Logic and Its Many-Sorted Representation. TABLEAUX 2007: 165-182 - [p1]Ekaterina Komendantskaya, Máire Lane, Anthony Karel Seda:
Connectionist Representation of Multi-Valued Logic Programs. Perspectives of Neural-Symbolic Integration 2007: 283-313 - 2006
- [c1]Ekaterina Komendantskaya, Anthony Karel Seda:
Sound and Complete SLD-Resolution for Bilattice-Based Annotated Logic Programs. MFCSIT 2006: 141-159
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-31 20:11 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint