default search action
Václav Smídl
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j29]Vít Skvára, Václav Smídl, Tomás Pevný:
Anomaly detection in multifactor data. Neural Comput. Appl. 36(34): 21561-21580 (2024) - [j28]Michaela Masková, Matej Zorek, Tomás Pevný, Václav Smídl:
Deep anomaly detection on set data: Survey and comparison. Pattern Recognit. 151: 110381 (2024) - [j27]Simon Mandlík, Tomás Pevný, Václav Smídl, Lukás Bajer:
Malicious Internet Entity Detection Using Local Graph Inference. IEEE Trans. Inf. Forensics Secur. 19: 3554-3566 (2024) - [c60]Milan Papez, Martin Rektoris, Václav Smídl, Tomás Pevný:
Sum-Product-Set Networks: Deep Tractable Models for Tree-Structured Graphs. ICLR 2024 - [c59]Antonie Brozová, Václav Smídl:
Avoiding Undesirable Solutions of Deep Blind Image Deconvolution. VISIGRAPP (3): VISAPP 2024: 559-566 - [i16]Simon Mandlík, Tomás Pevný, Václav Smídl, Lukás Bajer:
Malicious Internet Entity Detection Using Local Graph Inference. CoRR abs/2408.03287 (2024) - [i15]Milan Papez, Martin Rektoris, Tomás Pevný, Václav Smídl:
Sum-Product-Set Networks: Deep Tractable Models for Tree-Structured Graphs. CoRR abs/2408.07394 (2024) - [i14]Milan Papez, Martin Rektoris, Václav Smídl, Tomás Pevný:
GraphSPNs: Sum-Product Networks Benefit From Canonical Orderings. CoRR abs/2408.09451 (2024) - 2023
- [c58]Jan Laksar, Václav Smídl, Tomás Komrska, Lukás Adam:
Optimal Current Setpoints for Five-Phase Synchronous Drive. IECON 2023: 1-6 - [c57]Jakub Sevcik, Václav Smídl, Antonín Glac, Zdenek Peroutka:
Neural ODE for Estimation of Flux Linkage Models of Synchronous Machines. IECON 2023: 1-6 - [i13]Vít Skvára, Tomás Pevný, Václav Smídl:
Is AUC the best measure for practical comparison of anomaly detectors? CoRR abs/2305.04754 (2023) - 2022
- [j26]Lukás Adam, Václav Mácha, Václav Smídl, Tomás Pevný:
General framework for binary classification on top samples. Optim. Methods Softw. 37(5): 1636-1667 (2022) - [j25]Josef Justa, Václav Smídl, Ales Hamácek:
Deep Learning Methods for Speed Estimation of Bipedal Motion from Wearable IMU Sensors. Sensors 22(10): 3865 (2022) - [j24]Vít Skvára, Jan Francu, Matej Zorek, Tomás Pevný, Václav Smídl:
Comparison of Anomaly Detectors: Context Matters. IEEE Trans. Neural Networks Learn. Syst. 33(6): 2494-2507 (2022) - [c56]Marko Sahan, Václav Smídl, Radek Marik:
Batch Active Learning for Text Classification and Sentiment Analysis. CCRIS 2022: 111-116 - [c55]Mirza Ramicic, Václav Smídl, Andrea Bonarini:
Informed Sampling of Prioritized Experience Replay. ICDL 2022: 215-222 - [c54]Jakub Sevcik, Václav Smídl, Martin Votava:
Identification of Thermal Model Parameters Using Deep Learning Techniques. ISIE 2022: 978-981 - [i12]Petr Pecha, Miroslav Kárný, Emilie Pechová, Václav Smídl, Ondrej Tichý:
Potential Hazard of Accidental Radioactive Discharges into the Calm Atmosphere. ERCIM News 2022(129): 0 (2022) - 2021
- [j23]Stepán Janous, Jakub Talla, Václav Smídl, Zdenek Peroutka:
Constrained LQR Control of Dual Induction Motor Single Inverter Drive. IEEE Trans. Ind. Electron. 68(7): 5548-5558 (2021) - [c53]Jan Kotera, Filip Sroubek, Václav Smídl:
Improving Neural Blind Deconvolution. ICIP 2021: 1954-1958 - [c52]Marko Sahan, Václav Smídl, Radek Marík:
Active Learning for Text Classification and Fake News Detection. ISCSIC 2021: 87-94 - [i11]Milan Papez, Tomás Pevný, Václav Smídl:
Fitting large mixture models using stochastic component selection. CoRR abs/2110.04776 (2021) - 2020
- [j22]Marek Fehér, Ondrej Straka, Václav Smídl:
Model predictive control of electric drive system with L1-norm. Eur. J. Control 56: 242-253 (2020) - [j21]Josef Justa, Václav Smídl, Ales Hamácek:
Fast AHRS Filter for Accelerometer, Magnetometer, and Gyroscope Combination with Separated Sensor Corrections. Sensors 20(14): 3824 (2020) - [j20]Michal Kroneisl, Václav Smídl, Zdenek Peroutka, Martin Janda:
Predictive Control of IM Drive Acoustic Noise. IEEE Trans. Ind. Electron. 67(7): 5666-5676 (2020) - [c51]Antonín Glac, Václav Smídl, Zdenek Peroutka, Christoph M. Hackl:
Comparison of IPMSM Parameter Estimation Methods for Motor Efficiency. IECON 2020: 895-900 - [c50]Michal Kroneisl, Václav Smídl:
Bayesian optimization of FCS-MPC Parameters for Reduction of Induction Motor Electromagnetic Noise. ISIE 2020: 271-276 - [c49]Niklas Heim, Tomás Pevný, Václav Smídl:
Neural Power Units. NeurIPS 2020 - [c48]Tomás Pevný, Václav Smídl, Martin Trapp, Ondrej Polácek, Tomás Oberhuber:
Sum-Product-Transform Networks: Exploiting Symmetries using Invertible Transformations. PGM 2020: 341-352 - [i10]Lukás Adam, Václav Mácha, Václav Smídl, Tomás Pevný:
General Framework for Binary Classification on Top Samples. CoRR abs/2002.10923 (2020) - [i9]Václav Mácha, Lukás Adam, Václav Smídl:
Nonlinear classifiers for ranking problems based on kernelized SVM. CoRR abs/2002.11436 (2020) - [i8]Tomás Pevný, Václav Smídl, Martin Trapp, Ondrej Polácek, Tomás Oberhuber:
Sum-Product-Transform Networks: Exploiting Symmetries using Invertible Transformations. CoRR abs/2005.01297 (2020) - [i7]Niklas Heim, Tomás Pevný, Václav Smídl:
Neural Power Units. CoRR abs/2006.01681 (2020) - [i6]Lukás Adam, Václav Mácha, Václav Smídl:
DeepTopPush: Simple and Scalable Method for Accuracy at the Top. CoRR abs/2006.12293 (2020) - [i5]Jakub Sevcik, Lukás Adam, Jan Prikryl, Václav Smídl:
Solvability of the Power Flow Problem in DC Overhead Wire Circuit. CoRR abs/2010.03430 (2020) - [i4]Vít Skvára, Jan Francu, Matej Zorek, Tomás Pevný, Václav Smídl:
Comparison of Anomaly Detectors: Context Matters. CoRR abs/2012.06260 (2020)
2010 – 2019
- 2019
- [j19]Ondrej Tichý, Lenka Bodiova, Václav Smídl:
Bayesian Non-Negative Matrix Factorization With Adaptive Sparsity and Smoothness Prior. IEEE Signal Process. Lett. 26(3): 510-514 (2019) - [c47]Jakub Sevcik, Václav Smídl, Martin Votava:
Identification of Thermal Model of Power Module Using Expectation-Maximization Algorithm. IECON 2019: 119-125 - [c46]Jaroslav Dragoun, Václav Smídl:
Adaptive control of LCL filter with time-varying parameters using reinforcement learning. IECON 2019: 267-272 - [c45]Levon Gevorkov, Václav Smídl, Martin Sirový:
Model of Hybrid Speed and Throttle Control for Centrifugal Pump System Enhancement. ISIE 2019: 563-568 - [i3]Václav Smídl, Jan Bím, Tomás Pevný:
Anomaly scores for generative models. CoRR abs/1905.11890 (2019) - [i2]Niklas Heim, Václav Smídl, Tomás Pevný:
Rodent: Relevance determination in ODE. CoRR abs/1912.00656 (2019) - 2018
- [j18]Jakub Sevcik, Václav Smídl, Filip Sroubek:
An Adaptive Correlated Image Prior for Image Restoration Problems. IEEE Signal Process. Lett. 25(7): 1024-1028 (2018) - [j17]Václav Smídl, Stepán Janous, Lukás Adam, Zdenek Peroutka:
Direct Speed Control of a PMSM Drive Using SDRE and Convex Constrained Optimization. IEEE Trans. Ind. Electron. 65(1): 532-542 (2018) - [j16]David Uzel, Zdenek Peroutka, Václav Smídl, Tomás Kosan, Karel Zeman:
Self-Sensing Control of Wound Rotor Synchronous Motor Drive for Mine Hoist. IEEE Trans. Ind. Electron. 65(3): 2009-2017 (2018) - [j15]Jakub Talla, Viet Quoc Leu, Václav Smídl, Zdenek Peroutka:
Adaptive Speed Control of Induction Motor Drive With Inaccurate Model. IEEE Trans. Ind. Electron. 65(11): 8532-8542 (2018) - [c44]Antonín Glac, Václav Smídl, Zdenek Peroutka:
Optimal Feedforward Torque Control of Synchronous Machines with Time-Varying Parameters. IECON 2018: 613-618 - [c43]Stepán Janous, Jakub Talla, Zdenek Peroutka, Václav Smídl:
Predictive Control of Parallel Induction Motors Fed by Single Inverter with Common Current Sensors. IECON 2018: 5843-5848 - [i1]Vít Skvára, Tomás Pevný, Václav Smídl:
Are generative deep models for novelty detection truly better? CoRR abs/1807.05027 (2018) - 2017
- [j14]Jan Kotera, Václav Smídl, Filip Sroubek:
Blind Deconvolution With Model Discrepancies. IEEE Trans. Image Process. 26(5): 2533-2544 (2017) - [c42]Stepán Janous, Jakub Talla, Zdenek Peroutka, Václav Smídl:
Model predictive control of multiple induction machines fed from single inverter. IECON 2017: 6330-6335 - [c41]Marek Feher, Ondrej Straka, Václav Smídl:
Efficient MPC for permanent magnet synchronous motor. MED 2017: 36-41 - 2016
- [j13]Ondrej Tichý, Václav Smídl, Martin Sámal:
Model-based extraction of input and organ functions in dynamic scintigraphic imaging. Comput. methods Biomech. Biomed. Eng. Imaging Vis. 4(3-4): 135-145 (2016) - [j12]Ondrej Tichý, Václav Smídl:
Non-parametric Bayesian models of response function in dynamic image sequences. Comput. Vis. Image Underst. 151: 90-100 (2016) - [c40]Humphrey Mokom Njawah Achiri, Lubos Streit, Václav Smídl, Zdenek Peroutka:
Experimental validation of IGBT thermal impedances from voltage-based and direct temperature measurements. IECON 2016: 3396-3401 - [c39]Jan Michalik, Václav Smídl, Zdenek Peroutka:
LQ lookahead in finite control set MPC of current-source rectifier. IECON 2016: 3464-3469 - 2015
- [j11]Ondrej Tichý, Václav Smídl:
Estimation of input function from dynamic PET brain data using Bayesian blind source separation. Comput. Sci. Inf. Syst. 12(4): 1273-1287 (2015) - [j10]Leopoldo Armesto, Vicent Girbés, Antonio Sala, Miroslav Zima, Václav Smídl:
Duality-Based Nonlinear Quadratic Control: Application to Mobile Robot Trajectory-Following. IEEE Trans. Control. Syst. Technol. 23(4): 1494-1504 (2015) - [j9]Václav Smídl, Stepán Janous, Zdenek Peroutka:
Improved Stability of DC Catenary Fed Traction Drives Using Two-Stage Predictive Control. IEEE Trans. Ind. Electron. 62(5): 3192-3201 (2015) - [j8]Ondrej Tichý, Václav Smídl:
Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors. IEEE Trans. Medical Imaging 34(1): 258-266 (2015) - [c38]Ondrej Tichý, Václav Smídl:
Variational blind source separation toolbox and its application to hyperspectral image data. EUSIPCO 2015: 1326-1330 - [c37]Ondrej Tichý, Václav Smídl:
Bayesian Blind Source Separation with Unknown Prior Covariance. LVA/ICA 2015: 352-359 - [c36]Humphrey Mokom Njawah Achiri, Václav Smídl, Zdenek Peroutka:
Mitigation of electric drivetrain oscillation resulting from abrupt current derating at low coolant flow rate. IECON 2015: 3638-3642 - [c35]Jan Michalik, Zdenek Peroutka, Václav Smídl:
Finite control set MPC of active current-source rectifier with full state space model. IECON 2015: 4121-4126 - [c34]Jan Prikryl, Jakub Novotny, Václav Smídl:
On Distributed Traffic Signal Control. ITSC 2015: 894-899 - 2014
- [j7]Václav Smídl, Radek Hofman:
Efficient Sequential Monte Carlo Sampling for Continuous Monitoring of a Radiation Situation. Technometrics 56(4): 514-528 (2014) - [c33]Ondrej Tichý, Václav Smídl:
Kinetic modeling of the dynamic PET brain data using blind source separation methods. BMEI 2014: 329-334 - [c32]Filip Sroubek, Václav Smídl, Jan Kotera:
Understanding image priors in blind deconvolution. ICIP 2014: 4492-4496 - [c31]Václav Smídl, Stepán Janous, Zdenek Peroutka:
Extending horizon of finite control set MPC of PMSM drive with input LC filter using LQ lookahead. IECON 2014: 581-586 - [c30]David Uzel, Václav Smídl, Zdenek Peroutka:
Reduced-order Kalman filter in phase coordinates for IPMSM with higher flux harmonics. IECON 2014: 825-830 - [c29]Tomas Glasberger, Vendula Muzikova, Václav Smídl, Zdenek Peroutka:
Sensorless permanent magnet synchronous drive with DTC based on high frequency injections. IECON 2014: 850-856 - [c28]Radim Dudek, Václav Smídl, Zdenek Peroutka:
Start-stop system for a city bus based on model predictive control. IECON 2014: 3973-3978 - 2013
- [j6]Emre Özkan, Václav Smídl, Saikat Saha, Christian Lundquist, Fredrik Gustafsson:
Marginalized adaptive particle filtering for nonlinear models with unknown time-varying noise parameters. Autom. 49(6): 1566-1575 (2013) - [c27]Miroslav Zima, Leopoldo Armesto, Vicent Girbés, Antonio Sala, Václav Smídl:
Extended Rauch-Tung-Striebel controller. CDC 2013: 2900-2905 - [c26]Václav Smídl, Radek Hofman:
Adaptive importance sampling in particle filtering. FUSION 2013: 9-16 - [c25]Václav Smídl, Matej Gasperin:
Rao-Blackwellized point mass filter for reliable state estimation. FUSION 2013: 312-318 - [c24]David Uzel, Václav Smídl, Zdenek Peroutka:
Resolver motivated sensorless rotor position estimation of wound rotor synchronous motors with Kalman filter. IECON 2013: 3084-3089 - [c23]Václav Smídl, Robert Nedved, Tomás Kosan, Zdenek Peroutka:
FPGA implementation of marginalized particle filter for sensorless control of PMSM drives. IECON 2013: 8227-8232 - [c22]Václav Smídl, David Vosmik, Zdenek Peroutka:
Kalman filters unifying model-based and HF injection-based sensorless control of PMSM drives. IECON 2013: 8233-8238 - [c21]Tomas Glasberger, Vendula Muzikova, Zdenek Peroutka, Václav Smídl:
Sensorless direct torque control of PMSM with reduced model Extended Kalman filter. IECON 2013: 8239-8244 - [c20]Stepán Janous, Václav Smídl, Zdenek Peroutka:
Feed-forward guided generalized predictive control of PMSM drive. ISIE 2013: 1-6 - [c19]David Vosmik, Václav Smídl, Zdenek Peroutka:
Sensorless PMSM control: Hybrid rotor position estimator using maximum likelihood model selection. ISIE 2013: 1-6 - [c18]Václav Smídl, Ondrej Tichý:
Sparsity in Bayesian Blind Source Separation and Deconvolution. ECML/PKDD (2) 2013: 548-563 - 2012
- [j5]Václav Smídl, Zdenek Peroutka:
Advantages of Square-Root Extended Kalman Filter for Sensorless Control of AC Drives. IEEE Trans. Ind. Electron. 59(11): 4189-4196 (2012) - [c17]Václav Smídl, Radek Hofman:
Navigation of UAVs for tracking of atmospheric release of radiation. CDC 2012: 3098-3103 - [c16]Václav Smídl, Zdenek Peroutka:
Marginalized particle filter for sensorless control of PMSM drives. IECON 2012: 1877-1882 - [c15]Václav Smídl, Ondrej Tichý:
Automatic regions of interest in factor analysis for dynamic medical imaging. ISBI 2012: 158-161 - [c14]Václav Smídl, Fredrik Gustafsson:
Bayesian estimation of forgetting factor in adaptive filtering and change detection. SSP 2012: 197-200 - 2011
- [c13]Stepan Albrecht, Václav Smídl:
Model for memory-based music transcription and its Variational Bayes solution. EUSIPCO 2011: 1752-1755 - [c12]Emre Özkan, Saikat Saha, Fredrik Gustafsson, Václav Smídl:
Non-parametric bayesian measurement noise density estimation in non-linear filtering. ICASSP 2011: 5924-5927 - 2010
- [c11]Stepan Albrecht, Václav Smídl:
Improvements of continuous model for memory-based automatic music transcription. EUSIPCO 2010: 487-491 - [c10]Saikat Saha, Emre Özkan, Fredrik Gustafsson, Václav Smídl:
Marginalized particle filters for Bayesian estimation of Gaussian noise parameters. FUSION 2010: 1-8 - [c9]Václav Smídl:
Software analysis unifying particle filtering and marginalized particle filtering. FUSION 2010: 1-7 - [c8]Denis N. Sidorov, Daniil A. Panasetsky, Václav Smídl:
Non-stationary autoregressive model for on-line detection of inter-area oscillations in power systems. ISGT Europe 2010: 1-5
2000 – 2009
- 2008
- [j4]Václav Smídl, Anthony Quinn:
Variational Bayesian Filtering. IEEE Trans. Signal Process. 56(10-2): 5020-5030 (2008) - [c7]Václav Smídl, Josef Andrýsek:
Merging of multistep predictors for decentralized adaptive control. ACC 2008: 3414-3415 - [c6]Pavel Ettler, Josef Andrýsek, Václav Smídl, Miroslav Kárný:
Merging of Advices from Multiple Advisory Systems - With Evaluation on Rolling Mill Data. ICINCO-ICSO 2008: 66-71 - 2007
- [j3]Václav Smídl, Anthony Quinn:
On Bayesian principal component analysis. Comput. Stat. Data Anal. 51(9): 4101-4123 (2007) - [c5]Václav Smídl, Anthony Quinn:
Accelerated Particle Filtering using the Variational Bayes Approximation. ICASSP (3) 2007: 1173-1176 - 2006
- [c4]Václav Smídl, Anthony Quinn:
The Variational Bayes Approximation In Bayesian Filtering. ICASSP (3) 2006: 137-140 - 2005
- [j2]Václav Smídl, Anthony Quinn, Miroslav Kárný, Tatiana V. Guy:
Robust estimation of autoregressive processes using a mixture-based filter-bank. Syst. Control. Lett. 54(4): 315-323 (2005) - [j1]Václav Smídl, Anthony Quinn:
Mixture-based extension of the AR model and its recursive Bayesian identification. IEEE Trans. Signal Process. 53(9): 3530-3542 (2005) - [c3]Václav Smídl, Anthony Quinn:
The variational EM algorithm for on-line identification of extended AR models [speech processing example]. ICASSP (4) 2005: 117-120 - [c2]Václav Smídl, Jan Prikryl:
From Bayesian Decision-Makers to Bayesian Agents. SOAS 2005: 62-76 - 2001
- [c1]Václav Smídl, Miroslav Kárný, Martin Sámal, Werner Backfrieder, Zsolt Szabo:
Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data. IPMI 2001: 225-231
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 19:34 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint