default search action
Rajgopal Kannan
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j48]Pengmiao Zhang, Rajgopal Kannan, Anant V. Nori, Viktor K. Prasanna:
Accelerating Graph Analytics Using Attention-Based Data Prefetcher. SN Comput. Sci. 5(5): 646 (2024) - [j47]Bingyi Zhang, Rajgopal Kannan, Carl E. Busart, Viktor K. Prasanna:
VisionAGILE: A Versatile Domain-Specific Accelerator for Computer Vision Tasks. IEEE Trans. Parallel Distributed Syst. 35(12): 2405-2422 (2024) - [c137]Yang Yang, Rajgopal Kannan, Viktor K. Prasanna:
A Framework for Generating Accelerators for Homomorphic Encryption Operations on FPGAs. ASAP 2024: 61-70 - [c136]Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna:
Sparse MTTKRP Acceleration for Tensor Decomposition on GPU. CF 2024 - [c135]Zhihan Xu, Yang Yang, Rajgopal Kannan, Viktor K. Prasanna:
Bandwidth Efficient Homomorphic Encrypted Discrete Fourier Transform Acceleration on FPGA. FCCM 2024: 1-12 - [c134]Bingyi Zhang, Rajgopal Kannan, Carl E. Busart, Viktor K. Prasanna:
GCV-Turbo: End-to-end Acceleration of GNN-based Computer Vision Tasks on FPGA. FCCM 2024: 66-77 - [c133]Dhruv Parikh, Shouyi Li, Bingyi Zhang, Rajgopal Kannan, Carl E. Busart, Viktor K. Prasanna:
Accelerating ViT Inference on FPGA through Static and Dynamic Pruning. FCCM 2024: 78-89 - [c132]Pengmiao Zhang, Neelesh Gupta, Rajgopal Kannan, Viktor K. Prasanna:
Attention, Distillation, and Tabularization: Towards Practical Neural Network-Based Prefetching. IPDPS 2024: 876-888 - [c131]Gangda Deng, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Christopher Leung, Jianbo Li, Rajgopal Kannan, Viktor K. Prasanna:
TASER: Temporal Adaptive Sampling for Fast and Accurate Dynamic Graph Representation Learning. IPDPS 2024: 926-937 - [i59]Sasindu Wijeratne, Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
PAHD: Perception-Action based Human Decision Making using Explainable Graph Neural Networks on SAR Images. CoRR abs/2401.02687 (2024) - [i58]Pengmiao Zhang, Neelesh Gupta, Rajgopal Kannan, Viktor K. Prasanna:
Attention, Distillation, and Tabularization: Towards Practical Neural Network-Based Prefetching. CoRR abs/2401.06362 (2024) - [i57]Gangda Deng, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Christopher Leung, Jianbo Li, Rajgopal Kannan, Viktor K. Prasanna:
TASER: Temporal Adaptive Sampling for Fast and Accurate Dynamic Graph Representation Learning. CoRR abs/2402.05396 (2024) - [i56]Neelesh Gupta, Pengmiao Zhang, Rajgopal Kannan, Viktor K. Prasanna:
PaCKD: Pattern-Clustered Knowledge Distillation for Compressing Memory Access Prediction Models. CoRR abs/2402.13441 (2024) - [i55]Dhruv Parikh, Shouyi Li, Bingyi Zhang, Rajgopal Kannan, Carl E. Busart, Viktor K. Prasanna:
Accelerating ViT Inference on FPGA through Static and Dynamic Pruning. CoRR abs/2403.14047 (2024) - [i54]Tian Ye, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Uncertainty-Aware SAR ATR: Defending Against Adversarial Attacks via Bayesian Neural Networks. CoRR abs/2403.18318 (2024) - [i53]Xu Wang, Tian Ye, Rajgopal Kannan, Viktor K. Prasanna:
FACTUAL: A Novel Framework for Contrastive Learning Based Robust SAR Image Classification. CoRR abs/2404.03225 (2024) - [i52]Sachini Wickramasinghe, Dhruv Parikh, Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
VTR: An Optimized Vision Transformer for SAR ATR Acceleration on FPGA. CoRR abs/2404.04527 (2024) - [i51]Bingyi Zhang, Rajgopal Kannan, Carl E. Busart, Viktor K. Prasanna:
GCV-Turbo: End-to-end Acceleration of GNN-based Computer Vision Tasks on FPGA. CoRR abs/2404.07188 (2024) - [i50]Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna:
Sparse MTTKRP Acceleration for Tensor Decomposition on GPU. CoRR abs/2405.08470 (2024) - [i49]Jacob Fein-Ashley, Rajgopal Kannan, Viktor K. Prasanna:
Studying the Effects of Self-Attention on SAR Automatic Target Recognition. CoRR abs/2409.00473 (2024) - [i48]Gangda Deng, Hongkuan Zhou, Rajgopal Kannan, Viktor K. Prasanna:
Learning Personalized Scoping for Graph Neural Networks under Heterophily. CoRR abs/2409.06998 (2024) - [i47]Ömer Faruk Akgül, Rajgopal Kannan, Viktor K. Prasanna:
Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information. CoRR abs/2410.14010 (2024) - [i46]Tian Ye, Rajgopal Kannan, Viktor K. Prasanna:
Adversarial Training in Low-Label Regimes with Margin-Based Interpolation. CoRR abs/2411.17959 (2024) - 2023
- [j46]Tian Xie, Rajgopal Kannan, C.-C. Jay Kuo:
Label Efficient Regularization and Propagation for Graph Node Classification. IEEE Trans. Pattern Anal. Mach. Intell. 45(12): 14856-14871 (2023) - [j45]Kartik Lakhotia, Rajgopal Kannan, Viktor K. Prasanna:
Parallel Peeling of Bipartite Networks for Hierarchical Dense Subgraph Discovery. ACM Trans. Parallel Comput. 10(2): 5:1-5:35 (2023) - [j44]Chung Ming Cheung, Sanmukh Rao Kuppannagari, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Behind-the-Meter Solar Generation Disaggregation at Varying Aggregation Levels Using Consumer Mixture Models. IEEE Trans. Sustain. Comput. 8(1): 43-55 (2023) - [c130]Ta-Yang Wang, Rajgopal Kannan, Viktor K. Prasanna:
Training Heterogeneous Graph Neural Networks using Bandit Sampling. CIKM 2023: 4345-4349 - [c129]Samuel Wiggins, Yuan Meng, Rajgopal Kannan, Viktor K. Prasanna:
Characterizing Speed Performance of Multi-Agent Reinforcement Learning. DATA 2023: 327-334 - [c128]Yuan Meng, Rajgopal Kannan, Viktor K. Prasanna:
A Framework for Monte-Carlo Tree Search on CPU-FPGA Heterogeneous Platform via on-chip Dynamic Tree Management. FPGA 2023: 235-245 - [c127]Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA. FPGA 2023: 259-269 - [c126]Yang Yang, Weihang Long, Rajgopal Kannan, Viktor K. Prasanna:
FPGA Acceleration of Rotation in Homomorphic Encryption Using Dynamic Data Layout. FPL 2023: 174-181 - [c125]Jacob Fein-Ashley, Tian Ye, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Benchmarking Deep Learning Classifiers for SAR Automatic Target Recognition. HPEC 2023: 1-6 - [c124]Abhiram Rao Gorle, Pengmiao Zhang, Rajgopal Kannan, Viktor K. Prasanna:
G-MAP: A Graph Neural Network-Based Framework for Memory Access Prediction. HPEC 2023: 1-7 - [c123]Neelesh Gupta, Pengmiao Zhang, Rajgopal Kannan, Viktor K. Prasanna:
PaCKD: Pattern-Clustered Knowledge Distillation for Compressing Memory Access Prediction Models. HPEC 2023: 1-7 - [c122]Dhruv Parikh, Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Performance of Graph Neural Networks for Point Cloud Applications. HPEC 2023: 1-7 - [c121]Samuel Wiggins, Yuan Meng, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Multi-Agent DDPG on CPU-FPGA Heterogeneous Platform. HPEC 2023: 1-7 - [c120]Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Accelerating GNN-Based SAR Automatic Target Recognition on HBM-Enabled FPGA. HPEC 2023: 1-7 - [c119]Hongkuan Zhou, Rajgopal Kannan, Ananthram Swami, Viktor K. Prasanna:
HTNet: Dynamic WLAN Performance Prediction using Heterogenous Temporal GNN. INFOCOM 2023: 1-10 - [c118]Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna:
Dynasor: A Dynamic Memory Layout for Accelerating Sparse MTTKRP for Tensor Decomposition on Multi-core CPU. SBAC-PAD 2023: 23-33 - [c117]Pengmiao Zhang, Rajgopal Kannan, Viktor K. Prasanna:
Phases, Modalities, Spatial and Temporal Locality: Domain Specific ML Prefetcher for Accelerating Graph Analytics. SC 2023: 91:1-91:15 - [i45]Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Accurate, Low-latency, Efficient SAR Automatic Target Recognition on FPGA. CoRR abs/2301.01454 (2023) - [i44]Hongkuan Zhou, Rajgopal Kannan, Ananthram Swami, Viktor K. Prasanna:
HTNet: Dynamic WLAN Performance Prediction using Heterogenous Temporal GNN. CoRR abs/2304.10013 (2023) - [i43]Bingyi Zhang, Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Graph Neural Network for Accurate and Low-complexity SAR ATR. CoRR abs/2305.07119 (2023) - [i42]Samuel Wiggins, Yuan Meng, Rajgopal Kannan, Viktor K. Prasanna:
Characterizing Speed Performance of Multi-Agent Reinforcement Learning. CoRR abs/2309.07108 (2023) - [i41]Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna:
Dynasor: A Dynamic Memory Layout for Accelerating Sparse MTTKRP for Tensor Decomposition on Multi-core CPU. CoRR abs/2309.09131 (2023) - [i40]Dhruv Parikh, Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Performance of Graph Neural Networks for Point Cloud Applications. CoRR abs/2309.09142 (2023) - [i39]Yue Niu, Rajgopal Kannan, Ajitesh Srivastava, Viktor K. Prasanna:
Reuse Kernels or Activations? A Flexible Dataflow for Low-latency Spectral CNN Acceleration. CoRR abs/2310.10902 (2023) - [i38]Tian Ye, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart, Lance M. Kaplan:
Realistic Scatterer Based Adversarial Attacks on SAR Image Classifiers. CoRR abs/2312.02912 (2023) - [i37]Jacob Fein-Ashley, Tian Ye, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Benchmarking Deep Learning Classifiers for SAR Automatic Target Recognition. CoRR abs/2312.06940 (2023) - 2022
- [j43]Pengmiao Zhang, Ajitesh Srivastava, Ta-Yang Wang, César A. F. De Rose, Rajgopal Kannan, Viktor K. Prasanna:
C-MemMAP: clustering-driven compact, adaptable, and generalizable meta-LSTM models for memory access prediction. Int. J. Data Sci. Anal. 13(1): 3-16 (2022) - [j42]Kartik Lakhotia, Fabrizio Petrini, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Allreduce With In-Network Reduction on Intel PIUMA. IEEE Micro 42(2): 44-52 (2022) - [j41]Yuan Meng, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
PPOAccel: A High-Throughput Acceleration Framework for Proximal Policy Optimization. IEEE Trans. Parallel Distributed Syst. 33(9): 2066-2078 (2022) - [c116]Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
NTTGen: a framework for generating low latency NTT implementations on FPGA. CF 2022: 30-39 - [c115]Pengmiao Zhang, Ajitesh Srivastava, Anant V. Nori, Rajgopal Kannan, Viktor K. Prasanna:
Fine-grained address segmentation for attention-based variable-degree prefetching. CF 2022: 103-112 - [c114]Ta-Yang Wang, Hongkuan Zhou, Rajgopal Kannan, Ananthram Swami, Viktor K. Prasanna:
Throughput optimization in heterogeneous MIMO networks: a GNN-based approach. GNNet@CoNEXT 2022: 42-47 - [c113]Pengmiao Zhang, Rajgopal Kannan, Anant V. Nori, Viktor K. Prasanna:
A2P: Attention-based Memory Access Prediction for Graph Analytics. DATA 2022: 135-145 - [c112]Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, Viktor K. Prasanna:
Towards Programmable Memory Controller for Tensor Decomposition. DATA 2022: 468-475 - [c111]Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
FPGA Accelerator for Homomorphic Encrypted Sparse Convolutional Neural Network Inference. FCCM 2022: 1-9 - [c110]Tian Ye, Rajgopal Kannan, Viktor K. Prasanna:
End-to-End Acceleration of Homomorphic Encrypted CNN Inference on FPGAs. FPGA 2022: 51 - [c109]Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Accurate, Low-latency, Efficient SAR Automatic Target Recognition on FPGA. FPL 2022: 1-8 - [c108]Yuan Meng, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Monte-Carlo Tree Search on CPU-FPGA Heterogeneous Platform. FPL 2022: 176-182 - [c107]Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
Bandwidth Efficient Homomorphic Encrypted Matrix Vector Multiplication Accelerator on FPGA. FPT 2022: 1-9 - [c106]Kartik Lakhotia, Fabrizio Petrini, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Prefix Scan with in-network computing on Intel PIUMA. HIPC 2022: 59-68 - [c105]Tian Ye, Rajgopal Kannan, Viktor K. Prasanna:
FPGA Acceleration of Fully Homomorphic Encryption over the Torus. HPEC 2022: 1-7 - [c104]Pengmiao Zhang, Rajgopal Kannan, Xiangzhi Tong, Anant V. Nori, Viktor K. Prasanna:
SHARP: Software Hint-Assisted Memory Access Prediction for Graph Analytics. HPEC 2022: 1-8 - [c103]Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Model-Architecture Co-Design for High Performance Temporal GNN Inference on FPGA. IPDPS 2022: 1108-1117 - [c102]Tian Ye, Sanmukh R. Kuppannagari, César A. F. De Rose, Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna:
Estimating the Impact of Communication Schemes for Distributed Graph Processing. ISPDC 2022: 49-56 - [c101]Pengmiao Zhang, Rajgopal Kannan, Ajitesh Srivastava, Anant V. Nori, Viktor K. Prasanna:
ReSemble: Reinforced Ensemble Framework for Data Prefetching. SC 2022: 81:1-81:14 - [i36]Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor K. Prasanna, Long Jin, Ren Chen:
Decoupling the Depth and Scope of Graph Neural Networks. CoRR abs/2201.07858 (2022) - [i35]Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Model-Architecture Co-Design for High Performance Temporal GNN Inference on FPGA. CoRR abs/2203.05095 (2022) - [i34]Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Design and Implementation of Knowledge Base for Runtime Management of Software Defined Hardware. CoRR abs/2203.15534 (2022) - [i33]Tian Xie, Rajgopal Kannan, C.-C. Jay Kuo:
GraphHop++: New Insights into GraphHop and Its Enhancement. CoRR abs/2204.08646 (2022) - [i32]Pengmiao Zhang, Ajitesh Srivastava, Anant V. Nori, Rajgopal Kannan, Viktor K. Prasanna:
Fine-Grained Address Segmentation for Attention-Based Variable-Degree Prefetching. CoRR abs/2205.02269 (2022) - [i31]Pengmiao Zhang, Ajitesh Srivastava, Anant V. Nori, Rajgopal Kannan, Viktor K. Prasanna:
TransforMAP: Transformer for Memory Access Prediction. CoRR abs/2205.14778 (2022) - [i30]Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, Viktor K. Prasanna:
Towards Programmable Memory Controller for Tensor Decomposition. CoRR abs/2207.08298 (2022) - [i29]Yuan Meng, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Monte-Carlo Tree Search on CPU-FPGA Heterogeneous Platform. CoRR abs/2208.11208 (2022) - [i28]Pengmiao Zhang, Rajgopal Kannan, Viktor K. Prasanna:
Phases, Modalities, Temporal and Spatial Locality: Domain Specific ML Prefetcher for Accelerating Graph Analytics. CoRR abs/2212.05250 (2022) - 2021
- [j40]Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Accurate, efficient and scalable training of Graph Neural Networks. J. Parallel Distributed Comput. 147: 166-183 (2021) - [j39]Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Large Scale Real-Time GNN Inference using Channel Pruning. Proc. VLDB Endow. 14(9): 1597-1605 (2021) - [c100]Hongkuan Zhou, James Orme-Rogers, Rajgopal Kannan, Viktor K. Prasanna:
SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence Modeling on Dynamic Entity Embeddings. CIKM 2021: 3667-3671 - [c99]Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna:
BoostGCN: A Framework for Optimizing GCN Inference on FPGA. FCCM 2021: 29-39 - [c98]Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna:
A Framework for Optimizing GCN Inference on FPGA. FPGA 2021: 145 - [c97]Yuan Meng, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
DYNAMAP: Dynamic Algorithm Mapping Framework for Low Latency CNN Inference. FPGA 2021: 183-193 - [c96]Tian Ye, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
Performance Modeling and FPGA Acceleration of Homomorphic Encrypted Convolution. FPL 2021: 115-121 - [c95]Ta-Yang Wang, William Chang, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Monte Carlo Tree Search for Task Mapping onto Heterogeneous Platforms. HiPC 2021: 63-70 - [c94]Yuan Meng, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
How to Avoid Zero-Spacing in Fractionally-Strided Convolution? A Hardware-Algorithm Co-Design Methodology. HiPC 2021: 81-90 - [c93]Kartik Lakhotia, Fabrizio Petrini, Rajgopal Kannan, Viktor K. Prasanna:
In-network reductions on multi-dimensional HyperX. HOTI 2021: 1-8 - [c92]Sasindu Wijeratne, Sanket Pattnaik, Zhiyu Chen, Rajgopal Kannan, Viktor K. Prasanna:
Programmable FPGA-based Memory Controller. HOTI 2021: 43-51 - [c91]Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna:
Reconfigurable Low-latency Memory System for Sparse Matricized Tensor Times Khatri-Rao Product on FPGA. HPEC 2021: 1-7 - [c90]Bingyi Zhang, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
Efficient Neighbor-Sampling-based GNN Training on CPU-FPGA Heterogeneous Platform. HPEC 2021: 1-7 - [c89]Chung Ming Cheung, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
Leveraging Spatial Information in Smart Grids using STGCN for Short-Term Load Forecasting. IC3 2021: 159-167 - [c88]Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor K. Prasanna, Long Jin, Ren Chen:
Decoupling the Depth and Scope of Graph Neural Networks. NeurIPS 2021: 19665-19679 - [c87]Naifeng Zhang, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
GenMAT: A General-Purpose Machine Learning-Driven Auto-Tuner for Heterogeneous Platforms. PEHC@SC 2021: 1-9 - [c86]Tian Ye, Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
FPGA Acceleration of Number Theoretic Transform. ISC 2021: 98-117 - [i27]Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Large Scale Real-Time GNN Inference using Channel Pruning. CoRR abs/2105.04528 (2021) - [i26]Sasindu Wijeratne, Sanket Pattnaik, Zhiyu Chen, Rajgopal Kannan, Viktor K. Prasanna:
Programmable FPGA-based Memory Controller. CoRR abs/2108.09601 (2021) - [i25]Hongkuan Zhou, James Orme-Rogers, Rajgopal Kannan, Viktor K. Prasanna:
SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence Modeling on Dynamic Entity Embeddings. CoRR abs/2109.04550 (2021) - [i24]Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna:
Reconfigurable Low-latency Memory System for Sparse Matricized Tensor Times Khatri-Rao Product on FPGA. CoRR abs/2109.08874 (2021) - [i23]Kartik Lakhotia, Rajgopal Kannan, Viktor K. Prasanna:
Parallel Peeling of Bipartite Networks for Hierarchical Dense Subgraph Discovery. CoRR abs/2110.12511 (2021) - 2020
- [j38]Kartik Lakhotia, Rajgopal Kannan, Viktor K. Prasanna, César A. F. De Rose:
RECEIPT: REfine CoarsE-grained IndePendent Tasks for Parallel Tip decomposition of Bipartite Graphs. Proc. VLDB Endow. 14(3): 404-417 (2020) - [j37]Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, Viktor K. Prasanna:
GPOP: A Scalable Cache- and Memory-efficient Framework for Graph Processing over Parts. ACM Trans. Parallel Comput. 7(1): 7:1-7:24 (2020) - [j36]Shijie Zhou, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Stochastic Gradient Descent Based Matrix Factorization on FPGA. IEEE Trans. Parallel Distributed Syst. 31(8): 1897-1911 (2020) - [c85]Yue Niu, Rajgopal Kannan, Ajitesh Srivastava, Viktor K. Prasanna:
Reuse Kernels or Activations?: A Flexible Dataflow for Low-latency Spectral CNN Acceleration. FPGA 2020: 266-276 - [c84]Rachit Rajat, Yuan Meng, Sanmukh R. Kuppannagari, Ajitesh Srivastava, Viktor K. Prasanna, Rajgopal Kannan:
QTAccel: A Generic FPGA based Design for Q-Table based Reinforcement Learning Accelerators. FPGA 2020: 323 - [c83]Ajitesh Srivastava, Naifeng Zhang, Rajgopal Kannan, Viktor K. Prasanna:
Towards High Performance, Portability, and Productivity: Lightweight Augmented Neural Networks for Performance Prediction. HiPC 2020: 21-30 - [c82]Yuan Meng, Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
How to Efficiently Train Your AI Agent? Characterizing and Evaluating Deep Reinforcement Learning on Heterogeneous Platforms. HPEC 2020: 1-7 - [c81]Tian Ye, Rajgopal Kannan, Viktor K. Prasanna:
Accelerator Design and Performance Modeling for Homomorphic Encrypted CNN Inference. HPEC 2020: 1-7 - [c80]Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
GraphSAINT: Graph Sampling Based Inductive Learning Method. ICLR 2020 - [c79]Yuan Meng, Sanmukh R. Kuppannagari, Rachit Rajat, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
QTAccel: A Generic FPGA based Design for Q-Table based Reinforcement Learning Accelerators. IPDPS Workshops 2020: 107-114 - [c78]Chung Ming Cheung, Sanmukh Rao Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
Load Demand User Profiling in Smart Grids with Distributed Solar Generation. ISGT 2020: 1-5 - [c77]Pengmiao Zhang, Ajitesh Srivastava, Benjamin Brooks, Rajgopal Kannan, Viktor K. Prasanna:
RAOP: Recurrent Neural Network Augmented Offset Prefetcher. MEMSYS 2020: 352-362 - [c76]Ajitesh Srivastava, Ta-Yang Wang, Pengmiao Zhang, César Augusto Fonticielha De Rose, Rajgopal Kannan, Viktor K. Prasanna:
MemMAP: Compact and Generalizable Meta-LSTM Models for Memory Access Prediction. PAKDD (2) 2020: 57-68 - [c75]Yang Yang, Sanmukh R. Kuppannagari, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
FASTHash: FPGA-Based High Throughput Parallel Hash Table. ISC 2020: 3-22 - [i22]Ajitesh Srivastava, Naifeng Zhang, Rajgopal Kannan, Viktor K. Prasanna:
Towards High Performance, Portability, and Productivity: Lightweight Augmented Neural Networks for Performance Prediction. CoRR abs/2003.07497 (2020) - [i21]Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Accurate, Efficient and Scalable Training of Graph Neural Networks. CoRR abs/2010.03166 (2020) - [i20]Kartik Lakhotia, Rajgopal Kannan, Viktor K. Prasanna, César A. F. De Rose:
RECEIPT: REfine CoarsE-grained IndePendent Tasks for Parallel Tip decomposition of Bipartite Graphs. CoRR abs/2010.08695 (2020) - [i19]Yuan Meng, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
DYNAMAP: Dynamic Algorithm Mapping Framework for Low Latency CNN Inference. CoRR abs/2012.00912 (2020)
2010 – 2019
- 2019
- [j35]Kartik Lakhotia, Rajgopal Kannan, Qing Dong, Viktor K. Prasanna:
Planting Trees for scalable and efficient Canonical Hub Labeling. Proc. VLDB Endow. 13(4): 492-505 (2019) - [j34]