


Остановите войну!
for scientists:


default search action
Rajgopal Kannan
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j44]Chung Ming Cheung
, Sanmukh Rao Kuppannagari
, Ajitesh Srivastava
, Rajgopal Kannan, Viktor K. Prasanna
:
Behind-the-Meter Solar Generation Disaggregation at Varying Aggregation Levels Using Consumer Mixture Models. IEEE Trans. Sustain. Comput. 8(1): 43-55 (2023) - [c117]Yuan Meng
, Rajgopal Kannan
, Viktor K. Prasanna
:
A Framework for Monte-Carlo Tree Search on CPU-FPGA Heterogeneous Platform via on-chip Dynamic Tree Management. FPGA 2023: 235-245 - [c116]Sasindu Wijeratne
, Ta-Yang Wang
, Rajgopal Kannan
, Viktor K. Prasanna
:
Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA. FPGA 2023: 259-269 - [i40]Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Accurate, Low-latency, Efficient SAR Automatic Target Recognition on FPGA. CoRR abs/2301.01454 (2023) - [i39]Hongkuan Zhou, Rajgopal Kannan, Ananthram Swami, Viktor K. Prasanna:
HTNet: Dynamic WLAN Performance Prediction using Heterogenous Temporal GNN. CoRR abs/2304.10013 (2023) - [i38]Bingyi Zhang, Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Graph Neural Network for Accurate and Low-complexity SAR ATR. CoRR abs/2305.07119 (2023) - 2022
- [j43]Pengmiao Zhang
, Ajitesh Srivastava, Ta-Yang Wang, César A. F. De Rose, Rajgopal Kannan, Viktor K. Prasanna:
C-MemMAP: clustering-driven compact, adaptable, and generalizable meta-LSTM models for memory access prediction. Int. J. Data Sci. Anal. 13(1): 3-16 (2022) - [j42]Kartik Lakhotia
, Fabrizio Petrini, Rajgopal Kannan
, Viktor K. Prasanna
:
Accelerating Allreduce With In-Network Reduction on Intel PIUMA. IEEE Micro 42(2): 44-52 (2022) - [j41]Yuan Meng
, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna
:
PPOAccel: A High-Throughput Acceleration Framework for Proximal Policy Optimization. IEEE Trans. Parallel Distributed Syst. 33(9): 2066-2078 (2022) - [c115]Yang Yang, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
NTTGen: a framework for generating low latency NTT implementations on FPGA. CF 2022: 30-39 - [c114]Pengmiao Zhang, Ajitesh Srivastava, Anant V. Nori, Rajgopal Kannan, Viktor K. Prasanna:
Fine-grained address segmentation for attention-based variable-degree prefetching. CF 2022: 103-112 - [c113]Ta-Yang Wang, Hongkuan Zhou, Rajgopal Kannan, Ananthram Swami, Viktor K. Prasanna:
Throughput optimization in heterogeneous MIMO networks: a GNN-based approach. GNNet@CoNEXT 2022: 42-47 - [c112]Pengmiao Zhang, Rajgopal Kannan, Anant V. Nori, Viktor K. Prasanna:
A2P: Attention-based Memory Access Prediction for Graph Analytics. DATA 2022: 135-145 - [c111]Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, Viktor K. Prasanna:
Towards Programmable Memory Controller for Tensor Decomposition. DATA 2022: 468-475 - [c110]Yang Yang, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
FPGA Accelerator for Homomorphic Encrypted Sparse Convolutional Neural Network Inference. FCCM 2022: 1-9 - [c109]Tian Ye, Rajgopal Kannan, Viktor K. Prasanna:
End-to-End Acceleration of Homomorphic Encrypted CNN Inference on FPGAs. FPGA 2022: 51 - [c108]Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Accurate, Low-latency, Efficient SAR Automatic Target Recognition on FPGA. FPL 2022: 1-8 - [c107]Yuan Meng, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Monte-Carlo Tree Search on CPU-FPGA Heterogeneous Platform. FPL 2022: 176-182 - [c106]Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
Bandwidth Efficient Homomorphic Encrypted Matrix Vector Multiplication Accelerator on FPGA. FPT 2022: 1-9 - [c105]Tian Ye, Rajgopal Kannan, Viktor K. Prasanna:
FPGA Acceleration of Fully Homomorphic Encryption over the Torus. HPEC 2022: 1-7 - [c104]Pengmiao Zhang, Rajgopal Kannan, Xiangzhi Tong, Anant V. Nori, Viktor K. Prasanna:
SHARP: Software Hint-Assisted Memory Access Prediction for Graph Analytics. HPEC 2022: 1-8 - [c103]Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Model-Architecture Co-Design for High Performance Temporal GNN Inference on FPGA. IPDPS 2022: 1108-1117 - [c102]Tian Ye, Sanmukh R. Kuppannagari, César A. F. De Rose, Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna:
Estimating the Impact of Communication Schemes for Distributed Graph Processing. ISPDC 2022: 49-56 - [c101]Pengmiao Zhang, Rajgopal Kannan, Ajitesh Srivastava, Anant V. Nori, Viktor K. Prasanna:
ReSemble: Reinforced Ensemble Framework for Data Prefetching. SC 2022: 81:1-81:14 - [i37]Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor K. Prasanna, Long Jin, Ren Chen:
Decoupling the Depth and Scope of Graph Neural Networks. CoRR abs/2201.07858 (2022) - [i36]Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, Carl E. Busart:
Model-Architecture Co-Design for High Performance Temporal GNN Inference on FPGA. CoRR abs/2203.05095 (2022) - [i35]Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Design and Implementation of Knowledge Base for Runtime Management of Software Defined Hardware. CoRR abs/2203.15534 (2022) - [i34]Tian Xie, Rajgopal Kannan, C.-C. Jay Kuo:
GraphHop++: New Insights into GraphHop and Its Enhancement. CoRR abs/2204.08646 (2022) - [i33]Pengmiao Zhang, Ajitesh Srivastava, Anant V. Nori, Rajgopal Kannan, Viktor K. Prasanna:
Fine-Grained Address Segmentation for Attention-Based Variable-Degree Prefetching. CoRR abs/2205.02269 (2022) - [i32]Pengmiao Zhang, Ajitesh Srivastava, Anant V. Nori, Rajgopal Kannan, Viktor K. Prasanna:
TransforMAP: Transformer for Memory Access Prediction. CoRR abs/2205.14778 (2022) - [i31]Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, Viktor K. Prasanna:
Towards Programmable Memory Controller for Tensor Decomposition. CoRR abs/2207.08298 (2022) - [i30]Yuan Meng, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Monte-Carlo Tree Search on CPU-FPGA Heterogeneous Platform. CoRR abs/2208.11208 (2022) - [i29]Pengmiao Zhang, Rajgopal Kannan, Viktor K. Prasanna:
Phases, Modalities, Temporal and Spatial Locality: Domain Specific ML Prefetcher for Accelerating Graph Analytics. CoRR abs/2212.05250 (2022) - 2021
- [j40]Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Accurate, efficient and scalable training of Graph Neural Networks. J. Parallel Distributed Comput. 147: 166-183 (2021) - [j39]Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Large Scale Real-Time GNN Inference using Channel Pruning. Proc. VLDB Endow. 14(9): 1597-1605 (2021) - [c100]Hongkuan Zhou, James Orme-Rogers, Rajgopal Kannan, Viktor K. Prasanna:
SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence Modeling on Dynamic Entity Embeddings. CIKM 2021: 3667-3671 - [c99]Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna:
BoostGCN: A Framework for Optimizing GCN Inference on FPGA. FCCM 2021: 29-39 - [c98]Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna:
A Framework for Optimizing GCN Inference on FPGA. FPGA 2021: 145 - [c97]Yuan Meng, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
DYNAMAP: Dynamic Algorithm Mapping Framework for Low Latency CNN Inference. FPGA 2021: 183-193 - [c96]Tian Ye, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Performance Modeling and FPGA Acceleration of Homomorphic Encrypted Convolution. FPL 2021: 115-121 - [c95]Ta-Yang Wang, William Chang, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Monte Carlo Tree Search for Task Mapping onto Heterogeneous Platforms. HiPC 2021: 63-70 - [c94]Yuan Meng, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
How to Avoid Zero-Spacing in Fractionally-Strided Convolution? A Hardware-Algorithm Co-Design Methodology. HiPC 2021: 81-90 - [c93]Kartik Lakhotia, Fabrizio Petrini, Rajgopal Kannan, Viktor K. Prasanna:
In-network reductions on multi-dimensional HyperX. HOTI 2021: 1-8 - [c92]Sasindu Wijeratne, Sanket Pattnaik, Zhiyu Chen, Rajgopal Kannan, Viktor K. Prasanna:
Programmable FPGA-based Memory Controller. HOTI 2021: 43-51 - [c91]Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna:
Reconfigurable Low-latency Memory System for Sparse Matricized Tensor Times Khatri-Rao Product on FPGA. HPEC 2021: 1-7 - [c90]Bingyi Zhang, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Efficient Neighbor-Sampling-based GNN Training on CPU-FPGA Heterogeneous Platform. HPEC 2021: 1-7 - [c89]Chung Ming Cheung, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Leveraging Spatial Information in Smart Grids using STGCN for Short-Term Load Forecasting. IC3 2021: 159-167 - [c88]Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor K. Prasanna, Long Jin, Ren Chen:
Decoupling the Depth and Scope of Graph Neural Networks. NeurIPS 2021: 19665-19679 - [c87]Naifeng Zhang, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
GenMAT: A General-Purpose Machine Learning-Driven Auto-Tuner for Heterogeneous Platforms. PEHC@SC 2021: 1-9 - [c86]Tian Ye, Yang Yang, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
FPGA Acceleration of Number Theoretic Transform. ISC 2021: 98-117 - [i28]Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating Large Scale Real-Time GNN Inference using Channel Pruning. CoRR abs/2105.04528 (2021) - [i27]Sasindu Wijeratne, Sanket Pattnaik, Zhiyu Chen, Rajgopal Kannan, Viktor K. Prasanna:
Programmable FPGA-based Memory Controller. CoRR abs/2108.09601 (2021) - [i26]Hongkuan Zhou, James Orme-Rogers, Rajgopal Kannan, Viktor K. Prasanna:
SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence Modeling on Dynamic Entity Embeddings. CoRR abs/2109.04550 (2021) - [i25]Sasindu Wijeratne, Rajgopal Kannan, Viktor K. Prasanna:
Reconfigurable Low-latency Memory System for Sparse Matricized Tensor Times Khatri-Rao Product on FPGA. CoRR abs/2109.08874 (2021) - [i24]Kartik Lakhotia, Rajgopal Kannan, Viktor K. Prasanna:
Parallel Peeling of Bipartite Networks for Hierarchical Dense Subgraph Discovery. CoRR abs/2110.12511 (2021) - 2020
- [j38]Kartik Lakhotia, Rajgopal Kannan, Viktor K. Prasanna, César A. F. De Rose:
RECEIPT: REfine CoarsE-grained IndePendent Tasks for Parallel Tip decomposition of Bipartite Graphs. Proc. VLDB Endow. 14(3): 404-417 (2020) - [j37]Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, Viktor K. Prasanna:
GPOP: A Scalable Cache- and Memory-efficient Framework for Graph Processing over Parts. ACM Trans. Parallel Comput. 7(1): 7:1-7:24 (2020) - [j36]Shijie Zhou, Rajgopal Kannan, Viktor K. Prasanna
:
Accelerating Stochastic Gradient Descent Based Matrix Factorization on FPGA. IEEE Trans. Parallel Distributed Syst. 31(8): 1897-1911 (2020) - [c85]Yue Niu, Rajgopal Kannan, Ajitesh Srivastava, Viktor K. Prasanna:
Reuse Kernels or Activations?: A Flexible Dataflow for Low-latency Spectral CNN Acceleration. FPGA 2020: 266-276 - [c84]Rachit Rajat, Yuan Meng, Sanmukh R. Kuppannagari, Ajitesh Srivastava, Viktor K. Prasanna, Rajgopal Kannan:
QTAccel: A Generic FPGA based Design for Q-Table based Reinforcement Learning Accelerators. FPGA 2020: 323 - [c83]Ajitesh Srivastava, Naifeng Zhang, Rajgopal Kannan, Viktor K. Prasanna:
Towards High Performance, Portability, and Productivity: Lightweight Augmented Neural Networks for Performance Prediction. HiPC 2020: 21-30 - [c82]Yuan Meng, Yang Yang, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
How to Efficiently Train Your AI Agent? Characterizing and Evaluating Deep Reinforcement Learning on Heterogeneous Platforms. HPEC 2020: 1-7 - [c81]Tian Ye, Rajgopal Kannan, Viktor K. Prasanna:
Accelerator Design and Performance Modeling for Homomorphic Encrypted CNN Inference. HPEC 2020: 1-7 - [c80]Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
GraphSAINT: Graph Sampling Based Inductive Learning Method. ICLR 2020 - [c79]Yuan Meng, Sanmukh R. Kuppannagari
, Rachit Rajat, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
QTAccel: A Generic FPGA based Design for Q-Table based Reinforcement Learning Accelerators. IPDPS Workshops 2020: 107-114 - [c78]Chung Ming Cheung, Sanmukh Rao Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Load Demand User Profiling in Smart Grids with Distributed Solar Generation. ISGT 2020: 1-5 - [c77]Pengmiao Zhang, Ajitesh Srivastava, Benjamin Brooks, Rajgopal Kannan, Viktor K. Prasanna:
RAOP: Recurrent Neural Network Augmented Offset Prefetcher. MEMSYS 2020: 352-362 - [c76]Ajitesh Srivastava, Ta-Yang Wang, Pengmiao Zhang, César Augusto Fonticielha De Rose, Rajgopal Kannan, Viktor K. Prasanna:
MemMAP: Compact and Generalizable Meta-LSTM Models for Memory Access Prediction. PAKDD (2) 2020: 57-68 - [c75]Yang Yang, Sanmukh R. Kuppannagari
, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
FASTHash: FPGA-Based High Throughput Parallel Hash Table. ISC 2020: 3-22 - [i23]Ajitesh Srivastava, Naifeng Zhang, Rajgopal Kannan, Viktor K. Prasanna:
Towards High Performance, Portability, and Productivity: Lightweight Augmented Neural Networks for Performance Prediction. CoRR abs/2003.07497 (2020) - [i22]Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Accurate, Efficient and Scalable Training of Graph Neural Networks. CoRR abs/2010.03166 (2020) - [i21]Kartik Lakhotia, Rajgopal Kannan, Viktor K. Prasanna, César A. F. De Rose:
RECEIPT: REfine CoarsE-grained IndePendent Tasks for Parallel Tip decomposition of Bipartite Graphs. CoRR abs/2010.08695 (2020) - [i20]Yuan Meng, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
DYNAMAP: Dynamic Algorithm Mapping Framework for Low Latency CNN Inference. CoRR abs/2012.00912 (2020) - [i19]Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna, Long Jin, Andrey Malevich, Ren Chen:
Deep Graph Neural Networks with Shallow Subgraph Samplers. CoRR abs/2012.01380 (2020)
2010 – 2019
- 2019
- [j35]Kartik Lakhotia, Rajgopal Kannan, Qing Dong, Viktor K. Prasanna:
Planting Trees for scalable and efficient Canonical Hub Labeling. Proc. VLDB Endow. 13(4): 492-505 (2019) - [j34]Ajitesh Srivastava
, Robin Petering, Nicholas Barr
, Rajgopal Kannan, Eric Rice, Viktor K. Prasanna:
Network-based intervention strategies to reduce violence among homeless. Soc. Netw. Anal. Min. 9(1): 38:1-38:12 (2019) - [j33]Shijie Zhou
, Rajgopal Kannan, Viktor K. Prasanna
, Guna Seetharaman, Qing Wu:
HitGraph: High-throughput Graph Processing Framework on FPGA. IEEE Trans. Parallel Distributed Syst. 30(10): 2249-2264 (2019) - [c74]Ajitesh Srivastava, Rajgopal Kannan, Charalampos Chelmis, Viktor K. Prasanna:
RecANt: Network-based Recruitment for Active Fake News Correction. IEEE BigData 2019: 940-949 - [c73]Kartik Lakhotia, Rajgopal Kannan, Aditya Gaur, Ajitesh Srivastava, Viktor K. Prasanna:
Parallel edge-based sampling for static and dynamic graphs. CF 2019: 125-134 - [c72]Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Approximate Scheduling of DERs with Discrete Complex Injections. e-Energy 2019: 204-214 - [c71]Chung Ming Cheung, Sanmukh Rao Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Towards Improved Real-Time Observability of Behind-Meter PhotoVoltaic Systems: A Data-Driven Approach. e-Energy 2019: 447-455 - [c70]Chuanxiu Xiong, Ajitesh Srivastava, Rajgopal Kannan, Omkar Damle, Viktor K. Prasanna, Erroll Southers:
On Predicting Crime with Heterogeneous Spatial Patterns: Methods and Evaluation. SIGSPATIAL/GIS 2019: 43-51 - [c69]Yue Niu, Hanqing Zeng, Ajitesh Srivastava, Kartik Lakhotia, Rajgopal Kannan, Yanzhi Wang, Viktor K. Prasanna:
SPEC2: SPECtral SParsE CNN Accelerator on FPGAs. HiPC 2019: 195-204 - [c68]Sanmukh R. Kuppannagari
, Rachit Rajat, Rajgopal Kannan, Aravind Dasu, Viktor K. Prasanna:
IP Cores for Graph Kernels on FPGAs. HPEC 2019: 1-7 - [c67]Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Design and Implementation of Knowledge Base for Runtime Management of Software Defined Hardware. HPEC 2019: 1-7 - [c66]Chi Zhang, Sanmukh R. Kuppannagari
, Chuanxiu Xiong, Rajgopal Kannan, Viktor K. Prasanna:
A cooperative multi-agent deep reinforcement learning framework for real-time residential load scheduling. IoTDI 2019: 59-69 - [c65]Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Accurate, Efficient and Scalable Graph Embedding. IPDPS 2019: 462-471 - [c64]Ajitesh Srivastava, Angelos Lazaris, Benjamin Brooks, Rajgopal Kannan, Viktor K. Prasanna:
Predicting memory accesses: the road to compact ML-driven prefetcher. MEMSYS 2019: 461-470 - [c63]Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, Viktor K. Prasanna:
GPOP: a cache and memory-efficient framework for graph processing over partitions. PPoPP 2019: 393-394 - [c62]Chi Zhang, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Building HVAC Scheduling Using Reinforcement Learning via Neural Network Based Model Approximation. BuildSys@SenSys 2019: 287-296 - [i18]Kartik Lakhotia, Qing Dong, Rajgopal Kannan, Viktor K. Prasanna:
Planting Trees for scalable and efficient Canonical Hub Labeling. CoRR abs/1907.00140 (2019) - [i17]Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
GraphSAINT: Graph Sampling Based Inductive Learning Method. CoRR abs/1907.04931 (2019) - [i16]Chi Zhang, Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
Building HVAC Scheduling Using Reinforcement Learning via Neural Network Based Model Approximation. CoRR abs/1910.05313 (2019) - [i15]Yue Niu, Hanqing Zeng, Ajitesh Srivastava, Kartik Lakhotia, Rajgopal Kannan, Yanzhi Wang, Viktor K. Prasanna:
SPEC2: SPECtral SParsE CNN Accelerator on FPGAs. CoRR abs/1910.11103 (2019) - 2018
- [j32]Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Optimal Discrete Net-Load Balancing in Smart Grids with High PV Penetration. ACM Trans. Sens. Networks 14(3-4): 24:1-24:30 (2018) - [c61]Ajitesh Srivastava, Robin Petering, Rajgopal Kannan, Eric Rice, Viktor K. Prasanna:
How to Stop Violence Among Homeless: Extension of Voter Model and Intervention Strategies. ASONAM 2018: 83-86 - [c60]Ajitesh Srivastava, Rajgopal Kannan, Charalampos Chelmis, Viktor K. Prasanna:
FActCheck: Keeping Activation of Fake News at Check. AAMAS 2018: 2079-2081 - [c59]Shijie Zhou, Rajgopal Kannan, Hanqing Zeng, Viktor K. Prasanna:
An FPGA framework for edge-centric graph processing. CF 2018: 69-77 - [c58]Shijie Zhou, Rajgopal Kannan, Yu Min, Viktor K. Prasanna:
FASTCF: FPGA-based Accelerator for STochastic-Gradient-Descent-based Collaborative Filtering. FPGA 2018: 259-268 - [c57]Chung Ming Cheung, Rajgopal Kannan, Viktor K. Prasanna:
Temporal ensemble learning of univariate methods for short term load forecasting. ISGT 2018: 1-5 - [c56]Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Risk aware net load balancing in micro grids with high DER penetration. ISGT 2018: 1-5 - [c55]Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
NO-LESS: Near optimal curtailment strategy selection for net load balancing in micro grids. ISGT 2018: 1-5 - [c54]Costas Busch, Rajgopal Kannan:
Polynomial Time Equilibria in Bottleneck Congestion Games. EC 2018: 393-409 - [c53]Chung Ming Cheung, Wen Zhong, Chuanxiu Xiong, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Behind-the-Meter Solar Generation Disaggregation using Consumer Mixture Models. SmartGridComm 2018: 1-6 - [c52]Chi Zhang, Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Generative Adversarial Network for Synthetic Time Series Data Generation in Smart Grids. SmartGridComm 2018: 1-6 - [c51]Kartik Lakhotia, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating PageRank using Partition-Centric Processing. USENIX Annual Technical Conference 2018: 427-440 - [i14]Kartik Lakhotia, Sourav Pati, Rajgopal Kannan, Viktor K. Prasanna:
GPOP: A cache- and work-efficient framework for Graph Processing Over Partitions. CoRR abs/1806.08092 (2018) - [i13]Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Accurate, Efficient and Scalable Graph Embedding. CoRR abs/1810.11899 (2018) - 2017
- [j31]Michael F. Stewart, Rajgopal Kannan, Amit Dvir
, Bhaskar Krishnamachari:
CASPaR: Congestion avoidance shortest path routing for delay tolerant networks. Int. J. Distributed Sens. Networks 13(11) (2017) - [j30]Saikat Basu, Manohar Karki
, Sangram Ganguly, Robert DiBiano, Supratik Mukhopadhyay, Shreekant Gayaka, Rajgopal Kannan, Ramakrishna R. Nemani:
Learning Sparse Feature Representations Using Probabilistic Quadtrees and Deep Belief Nets. Neural Process. Lett. 45(3): 855-867 (2017) - [c50]Michail Misyrlis, Chung Ming Cheung, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
Spatio-Temporal Modeling of Criminal Activity. SocialSens@CPSWeek 2017: 3-8 - [c49]Kartik Lakhotia, Shreyas G. Singapura, Rajgopal Kannan, Viktor K. Prasanna:
ReCALL: Reordered Cache Aware Locality Based Graph Processing. HiPC 2017: 273-282 - [c48]Oded Green, James Fox, Euna Kim, Federico Busato, Nicola Bombieri, Kartik Lakhotia, Shijie Zhou, Shreyas G. Singapura, Hanqing Zeng
, Rajgopal Kannan, Viktor K. Prasanna, David A. Bader
:
Quickly finding a truss in a haystack. HPEC 2017: 1-7 - [c47]Shreyas G. Singapura, Rajgopal Kannan, Viktor K. Prasanna:
Optimal data layout for block-level random accesses to scratchpad. HPEC 2017: 1-7 - [c46]Shreyas G. Singapura, Ajitesh Srivastava, Rajgopal Kannan, Viktor K. Prasanna:
OSCAR: Optimizing SCrAtchpad reuse for graph processing. HPEC 2017: 1-7 - [c45]Shijie Zhou, Kartik Lakhotia, Shreyas G. Singapura, Hanqing Zeng
, Rajgopal Kannan, Viktor K. Prasanna, James Fox, Euna Kim, Oded Green, David A. Bader
:
Design and implementation of parallel PageRank on multicore platforms. HPEC 2017: 1-6 - [c44]Charith Wickramaarachchi, Rajgopal Kannan, Charalampos Chelmis, Viktor K. Prasanna:
PReSS towards a secure smart grid: Protection recommendations against smart spoofing. ISGT 2017: 1-5 - [c43]Shijie Zhou, Rajgopal Kannan, Viktor K. Prasanna:
Accelerating low rank matrix completion on FPGA. ReConFig 2017: 1-7 - [c42]Sanmukh R. Kuppannagari
, Rajgopal Kannan, Viktor K. Prasanna:
Optimal net-load balancing in smart grids with high PV penetration. BuildSys@SenSys 2017: 27:1-27:10 - [i12]Sanmukh R. Kuppannagari, Rajgopal Kannan, Viktor K. Prasanna:
Optimal Net-Load Balancing in Smart Grids with High PV Penetration. CoRR abs/1709.00644 (2017) - [i11]