default search action
Michael Kapralov
Person information
- affiliation: EPFL, Switzerland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c61]Yu Chen, Michael Kapralov, Mikhail Makarov, Davide Mazzali:
On the Streaming Complexity of Expander Decomposition. ICALP 2024: 46:1-46:20 - [c60]Ce Jin, Michael Kapralov, Sepideh Mahabadi, Ali Vakilian:
Streaming Algorithms for Connectivity Augmentation. ICALP 2024: 93:1-93:20 - [c59]Moses Charikar, Michael Kapralov, Erik Waingarten:
A Quasi-Monte Carlo Data Structure for Smooth Kernel Evaluations. SODA 2024: 5118-5144 - [i52]Moses Charikar, Michael Kapralov, Erik Waingarten:
A Quasi-Monte Carlo Data Structure for Smooth Kernel Evaluations. CoRR abs/2401.02562 (2024) - [i51]Michael Kapralov, Mikhail Makarov, Christian Sohler:
On the adversarial robustness of Locality-Sensitive Hashing in Hamming space. CoRR abs/2402.09707 (2024) - [i50]Ce Jin, Michael Kapralov, Sepideh Mahabadi, Ali Vakilian:
Streaming Algorithms for Connectivity Augmentation. CoRR abs/2402.10806 (2024) - [i49]Yu Chen, Michael Kapralov, Mikhail Makarov, Davide Mazzali:
On the Streaming Complexity of Expander Decomposition. CoRR abs/2404.16701 (2024) - 2023
- [j7]Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, Torsten Hoefler:
Practice of Streaming Processing of Dynamic Graphs: Concepts, Models, and Systems. IEEE Trans. Parallel Distributed Syst. 34(6): 1860-1876 (2023) - [c58]Sepehr Assadi, Michael Kapralov, Huacheng Yu:
On Constructing Spanners from Random Gaussian Projections. APPROX/RANDOM 2023: 57:1-57:18 - [c57]Arnold Filtser, Michael Kapralov, Mikhail Makarov:
Expander Decomposition in Dynamic Streams. ITCS 2023: 50:1-50:13 - [c56]Michael Kapralov, Akash Kumar, Silvio Lattanzi, Aida Mousavifar:
Learning Hierarchical Cluster Structure of Graphs in Sublinear Time. SODA 2023: 925-939 - [c55]Michael Kapralov, Hannah Lawrence, Mikhail Makarov, Cameron Musco, Kshiteej Sheth:
Toeplitz Low-Rank Approximation with Sublinear Query Complexity. SODA 2023: 4127-4158 - [c54]Karl Bringmann, Michael Kapralov, Mikhail Makarov, Vasileios Nakos, Amir Yagudin, Amir Zandieh:
Traversing the FFT Computation Tree for Dimension-Independent Sparse Fourier Transforms. SODA 2023: 4768-4845 - 2022
- [c53]Michael Kapralov, Mikhail Makarov, Sandeep Silwal, Christian Sohler, Jakab Tardos:
Motif Cut Sparsifiers. FOCS 2022: 389-398 - [c52]Ashish Chiplunkar, John Kallaugher, Michael Kapralov, Eric Price:
Factorial Lower Bounds for (Almost) Random Order Streams. FOCS 2022: 486-497 - [c51]Michael Kapralov, Amulya Musipatla, Jakab Tardos, David P. Woodruff, Samson Zhou:
Noisy Boolean Hidden Matching with Applications. ITCS 2022: 91:1-91:19 - [c50]John Kallaugher, Michael Kapralov, Eric Price:
Simulating Random Walks in Random Streams. SODA 2022: 3091-3126 - [i48]Michael Kapralov, Mikhail Makarov, Sandeep Silwal, Christian Sohler, Jakab Tardos:
Motif Cut Sparsifiers. CoRR abs/2204.09951 (2022) - [i47]Michael Kapralov, Akash Kumar, Silvio Lattanzi, Aida Mousavifar:
Learning Hierarchical Structure of Clusterable Graphs. CoRR abs/2207.02581 (2022) - [i46]Sepehr Assadi, Michael Kapralov, Huacheng Yu:
On Constructing Spanners from Random Gaussian Projections. CoRR abs/2209.14775 (2022) - [i45]Michael Kapralov, Hannah Lawrence, Mikhail Makarov, Cameron Musco, Kshiteej Sheth:
Toeplitz Low-Rank Approximation with Sublinear Query Complexity. CoRR abs/2211.11328 (2022) - [i44]Arnold Filtser, Michael Kapralov, Mikhail Makarov:
Expander Decomposition in Dynamic Streams. CoRR abs/2211.11384 (2022) - 2021
- [c49]Michael Kapralov, Robert Krauthgamer, Jakab Tardos, Yuichi Yoshida:
Spectral Hypergraph Sparsifiers of Nearly Linear Size. FOCS 2021: 1159-1170 - [c48]Michael Kapralov, Silvio Lattanzi, Navid Nouri, Jakab Tardos:
Efficient and Local Parallel Random Walks. NeurIPS 2021: 21375-21387 - [c47]Grzegorz Gluch, Michael Kapralov, Silvio Lattanzi, Aida Mousavifar, Christian Sohler:
Spectral Clustering Oracles in Sublinear Time. SODA 2021: 1598-1617 - [c46]Michael Kapralov:
Space Lower Bounds for Approximating Maximum Matching in the Edge Arrival Model. SODA 2021: 1874-1893 - [c45]Arnold Filtser, Michael Kapralov, Navid Nouri:
Graph Spanners by Sketching in Dynamic Streams and the Simultaneous Communication Model. SODA 2021: 1894-1913 - [c44]Michael Kapralov, Gilbert Maystre, Jakab Tardos:
Communication Efficient Coresets for Maximum Matching. SOSA 2021: 156-164 - [c43]Michael Kapralov, Robert Krauthgamer, Jakab Tardos, Yuichi Yoshida:
Towards tight bounds for spectral sparsification of hypergraphs. STOC 2021: 598-611 - [i43]Grzegorz Gluch, Michael Kapralov, Silvio Lattanzi, Aida Mousavifar, Christian Sohler:
Spectral Clustering Oracles in Sublinear Time. CoRR abs/2101.05549 (2021) - [i42]Michael Kapralov:
Space Lower Bounds for Approximating Maximum Matching in the Edge Arrival Model. CoRR abs/2103.11669 (2021) - [i41]Michael Kapralov, Robert Krauthgamer, Jakab Tardos, Yuichi Yoshida:
Spectral Hypergraph Sparsifiers of Nearly Linear Size. CoRR abs/2106.02353 (2021) - [i40]Michael Kapralov, Amulya Musipatla, Jakab Tardos, David P. Woodruff, Samson Zhou:
Noisy Boolean Hidden Matching with Applications. CoRR abs/2107.02578 (2021) - [i39]Karl Bringmann, Michael Kapralov, Mikhail Makarov, Vasileios Nakos, Amir Yagudin, Amir Zandieh:
Sparse Fourier Transform by traversing Cooley-Tukey FFT computation graphs. CoRR abs/2107.07347 (2021) - [i38]Ashish Chiplunkar, John Kallaugher, Michael Kapralov, Eric Price:
Approximating Local Graph Structure in Almost Random Order Streams. CoRR abs/2110.10091 (2021) - [i37]Michael Kapralov, Silvio Lattanzi, Navid Nouri, Jakab Tardos:
Efficient and Local Parallel Random Walks. CoRR abs/2112.00655 (2021) - [i36]John Kallaugher, Michael Kapralov, Eric Price:
Simulating Random Walks in Random Streams. CoRR abs/2112.07532 (2021) - 2020
- [c42]Amir Zandieh, Navid Nouri, Ameya Velingker, Michael Kapralov, Ilya P. Razenshteyn:
Scaling up Kernel Ridge Regression via Locality Sensitive Hashing. AISTATS 2020: 4088-4097 - [c41]Moses Charikar, Michael Kapralov, Navid Nouri, Paris Siminelakis:
Kernel Density Estimation through Density Constrained Near Neighbor Search. FOCS 2020: 172-183 - [c40]Thomas D. Ahle, Michael Kapralov, Jakob Bæk Tejs Knudsen, Rasmus Pagh, Ameya Velingker, David P. Woodruff, Amir Zandieh:
Oblivious Sketching of High-Degree Polynomial Kernels. SODA 2020: 141-160 - [c39]Marek Eliás, Michael Kapralov, Janardhan Kulkarni, Yin Tat Lee:
Differentially Private Release of Synthetic Graphs. SODA 2020: 560-578 - [c38]Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, Jakab Tardos:
Space Efficient Approximation to Maximum Matching Size from Uniform Edge Samples. SODA 2020: 1753-1772 - [c37]Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri, Aaron Sidford, Jakab Tardos:
Fast and Space Efficient Spectral Sparsification in Dynamic Streams. SODA 2020: 1814-1833 - [i35]Michael Kapralov, Navid Nouri, Ilya P. Razenshteyn, Ameya Velingker, Amir Zandieh:
Scaling up Kernel Ridge Regression via Locality Sensitive Hashing. CoRR abs/2003.09756 (2020) - [i34]Arnold Filtser, Michael Kapralov, Navid Nouri:
Graph Spanners by Sketching in Dynamic Streams and the Simultaneous Communication Model. CoRR abs/2007.14204 (2020) - [i33]Michael Kapralov, Gilbert Maystre, Jakab Tardos:
Communication Efficient Coresets for Maximum Matching. CoRR abs/2011.06481 (2020) - [i32]Michael Kapralov, Robert Krauthgamer, Jakab Tardos, Yuichi Yoshida:
Towards Tight Bounds for Spectral Sparsification of Hypergraphs. CoRR abs/2011.06530 (2020) - [i31]Moses Charikar, Michael Kapralov, Navid Nouri, Paris Siminelakis:
Kernel Density Estimation through Density Constrained Near Neighbor Search. CoRR abs/2011.06997 (2020)
2010 – 2019
- 2019
- [j6]Ashish Goel, Michael Kapralov, Sanjeev Khanna:
Perfect Matchings in Õ (n 1.5) Time in Regular Bipartite Graphs. Comb. 39(2): 323-354 (2019) - [c36]Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, David Wajc:
Online Matching with General Arrivals. FOCS 2019: 26-37 - [c35]Sepehr Assadi, Michael Kapralov, Sanjeev Khanna:
A Simple Sublinear-Time Algorithm for Counting Arbitrary Subgraphs via Edge Sampling. ITCS 2019: 6:1-6:20 - [c34]Andisheh Amrollahi, Amir Zandieh, Michael Kapralov, Andreas Krause:
Efficiently Learning Fourier Sparse Set Functions. NeurIPS 2019: 15094-15103 - [c33]Michael Kapralov, Ameya Velingker, Amir Zandieh:
Dimension-independent Sparse Fourier Transform. SODA 2019: 2709-2728 - [c32]Michael Kapralov, Dmitry Krachun:
An optimal space lower bound for approximating MAX-CUT. STOC 2019: 277-288 - [c31]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
A universal sampling method for reconstructing signals with simple Fourier transforms. STOC 2019: 1051-1063 - [i30]Michael Kapralov, Ameya Velingker, Amir Zandieh:
Dimension-independent Sparse Fourier Transform. CoRR abs/1902.10633 (2019) - [i29]Michael Kapralov, Navid Nouri, Aaron Sidford, Jakab Tardos:
Dynamic Streaming Spectral Sparsification in Nearly Linear Time and Space. CoRR abs/1903.12150 (2019) - [i28]Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri:
Faster Spectral Sparsification in Dynamic Streams. CoRR abs/1903.12165 (2019) - [i27]Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, David Wajc:
Online Matching with General Arrivals. CoRR abs/1904.08255 (2019) - [i26]Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, Jakab Tardos:
Space Efficient Approximation to Maximum Matching Size from Uniform Edge Samples. CoRR abs/1907.05725 (2019) - [i25]Michael Kapralov, Rasmus Pagh, Ameya Velingker, David P. Woodruff, Amir Zandieh:
Oblivious Sketching of High-Degree Polynomial Kernels. CoRR abs/1909.01410 (2019) - [i24]Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, Torsten Hoefler:
Practice of Streaming and Dynamic Graphs: Concepts, Models, Systems, and Parallelism. CoRR abs/1912.12740 (2019) - 2018
- [c30]Ashish Chiplunkar, Michael Kapralov, Sanjeev Khanna, Aida Mousavifar, Yuval Peres:
Testing Graph Clusterability: Algorithms and Lower Bounds. FOCS 2018: 497-508 - [c29]John Kallaugher, Michael Kapralov, Eric Price:
The Sketching Complexity of Graph and Hypergraph Counting. FOCS 2018: 556-567 - [i23]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees. CoRR abs/1804.09893 (2018) - [i22]Ashish Chiplunkar, Michael Kapralov, Sanjeev Khanna, Aida Mousavifar, Yuval Peres:
Testing Graph Clusterability: Algorithms and Lower Bounds. CoRR abs/1808.04807 (2018) - [i21]John Kallaugher, Michael Kapralov, Eric Price:
The Sketching Complexity of Graph and Hypergraph Counting. CoRR abs/1808.04995 (2018) - [i20]Sepehr Assadi, Michael Kapralov, Sanjeev Khanna:
A Simple Sublinear-Time Algorithm for Counting Arbitrary Subgraphs via Edge Sampling. CoRR abs/1811.07780 (2018) - [i19]Michael Kapralov, Dmitry Krachun:
An Optimal Space Lower Bound for Approximating MAX-CUT. CoRR abs/1811.10879 (2018) - [i18]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
A Universal Sampling Method for Reconstructing Signals with Simple Fourier Transforms. CoRR abs/1812.08723 (2018) - 2017
- [j5]Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, Aaron Sidford:
Single Pass Spectral Sparsification in Dynamic Streams. SIAM J. Comput. 46(1): 456-477 (2017) - [c28]Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P. Woodruff, Mobin Yahyazadeh:
Optimal Lower Bounds for Universal Relation, and for Samplers and Finding Duplicates in Streams. FOCS 2017: 475-486 - [c27]Michael Kapralov:
Sample Efficient Estimation and Recovery in Sparse FFT via Isolation on Average. FOCS 2017: 651-662 - [c26]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees. ICML 2017: 253-262 - [c25]Michael Kapralov, Sanjeev Khanna, Madhu Sudan, Ameya Velingker:
(1 + Ω(1))-Αpproximation to MAX-CUT Requires Linear Space. SODA 2017: 1703-1722 - [c24]Volkan Cevher, Michael Kapralov, Jonathan Scarlett, Amir Zandieh:
An adaptive sublinear-time block sparse fourier transform. STOC 2017: 702-715 - [i17]Volkan Cevher, Michael Kapralov, Jonathan Scarlett, Amir Zandieh:
An Adaptive Sublinear-Time Block Sparse Fourier Transform. CoRR abs/1702.01286 (2017) - [i16]Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P. Woodruff, Mobin Yahyazadeh:
Optimal lower bounds for universal relation, and for samplers and finding duplicates in streams. CoRR abs/1704.00633 (2017) - [i15]Michael Kapralov:
Sample Efficient Estimation and Recovery in Sparse FFT via Isolation on Average. CoRR abs/1708.04544 (2017) - 2016
- [c23]Michael Kapralov, Vamsi K. Potluru, David P. Woodruff:
How to Fake Multiply by a Gaussian Matrix. ICML 2016: 2101-2110 - [c22]Venkatesan T. Chakaravarthy, Michael Kapralov, Prakash Murali, Fabrizio Petrini, Xinyu Que, Yogish Sabharwal, Baruch Schieber:
Subgraph Counting: Color Coding Beyond Trees. IPDPS 2016: 2-11 - [c21]Michael Kapralov:
Sparse fourier transform in any constant dimension with nearly-optimal sample complexity in sublinear time. STOC 2016: 264-277 - [i14]Venkatesan T. Chakaravarthy, Michael Kapralov, Prakash Murali, Fabrizio Petrini, Xinyu Que, Yogish Sabharwal, Baruch Schieber:
Subgraph Counting: Color Coding Beyond Trees. CoRR abs/1602.04478 (2016) - [i13]Michael Kapralov:
Sparse Fourier Transform in Any Constant Dimension with Nearly-Optimal Sample Complexity in Sublinear Time. CoRR abs/1604.00845 (2016) - [i12]Michael Kapralov, Vamsi K. Potluru, David P. Woodruff:
How to Fake Multiply by a Gaussian Matrix. CoRR abs/1606.05732 (2016) - 2015
- [c20]Michael Kapralov:
Smooth Tradeoffs between Insert and Query Complexity in Nearest Neighbor Search. PODS 2015: 329-342 - [c19]Michael Kapralov, Sanjeev Khanna, Madhu Sudan:
Streaming Lower Bounds for Approximating MAX-CUT. SODA 2015: 1263-1282 - 2014
- [c18]Piotr Indyk, Michael Kapralov:
Sample-Optimal Fourier Sampling in Any Constant Dimension. FOCS 2014: 514-523 - [c17]Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, Aaron Sidford:
Single Pass Spectral Sparsification in Dynamic Streams. FOCS 2014: 561-570 - [c16]Michael Kapralov, David P. Woodruff:
Spanners and sparsifiers in dynamic streams. PODC 2014: 272-281 - [c15]Piotr Indyk, Michael Kapralov, Eric Price:
(Nearly) Sample-Optimal Sparse Fourier Transform. SODA 2014: 480-499 - [c14]Michael Kapralov, Sanjeev Khanna, Madhu Sudan:
Approximating matching size from random streams. SODA 2014: 734-751 - [i11]Piotr Indyk, Michael Kapralov:
Sample-Optimal Fourier Sampling in Any Constant Dimension - Part I. CoRR abs/1403.5804 (2014) - [i10]Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, Aaron Sidford:
Single Pass Spectral Sparsification in Dynamic Streams. CoRR abs/1407.1289 (2014) - [i9]Michael Kapralov, Sanjeev Khanna, Madhu Sudan:
Streaming Lower Bounds for Approximating MAX-CUT. CoRR abs/1409.2138 (2014) - 2013
- [j4]Ashish Goel, Michael Kapralov, Sanjeev Khanna:
Perfect Matchings in O(nlog n) Time in Regular Bipartite Graphs. SIAM J. Comput. 42(3): 1392-1404 (2013) - [c13]Michael Kapralov, Ian Post, Jan Vondrák:
Online Submodular Welfare Maximization: Greedy is Optimal. SODA 2013: 1216-1225 - [c12]Michael Kapralov, Kunal Talwar:
On differentially private low rank approximation. SODA 2013: 1395-1414 - [c11]Michael Kapralov:
Better bounds for matchings in the streaming model. SODA 2013: 1679-1697 - 2012
- [c10]Debojyoti Dutta, Michael Kapralov, Ian Post, Rajendra Shinde:
Embedding Paths into Trees: VM Placement to Minimize Congestion. ESA 2012: 431-442 - [c9]Michael Kapralov, Rina Panigrahy:
NNS Lower Bounds via Metric Expansion for l ∞ and EMD. ICALP (1) 2012: 545-556 - [c8]Michael Kapralov, Rina Panigrahy:
Spectral sparsification via random spanners. ITCS 2012: 393-398 - [c7]Ashish Goel, Michael Kapralov, Sanjeev Khanna:
On the communication and streaming complexity of maximum bipartite matching. SODA 2012: 468-485 - [i8]Debojyoti Dutta, Michael Kapralov, Ian Post, Rajendra Shinde:
Optimal bandwidth-aware VM allocation for Infrastructure-as-a-Service. CoRR abs/1202.3683 (2012) - [i7]Ashish Goel, Michael Kapralov, Ian Post:
Single pass sparsification in the streaming model with edge deletions. CoRR abs/1203.4900 (2012) - [i6]Mikhail Kapralov, Ian Post, Jan Vondrák:
Online and stochastic variants of welfare maximization. CoRR abs/1204.1025 (2012) - [i5]Michael Kapralov:
Improved lower bounds for matchings in the streaming model. CoRR abs/1206.2269 (2012) - 2011
- [c6]Michael Kapralov, Rina Panigrahy:
Multiplicative Approximations of Random Walk Transition Probabilities. APPROX-RANDOM 2011: 266-276 - [c5]Michael Kapralov, Rina Panigrahy:
Prediction strategies without loss. NIPS 2011: 828-836 - 2010
- [j3]Ashish Goel, Michael Kapralov, Sanjeev Khanna:
Perfect matchings via uniform sampling in regular bipartite graphs. ACM Trans. Algorithms 6(2): 27:1-27:13 (2010) - [c4]Bahman Bahmani, Michael Kapralov:
Improved Bounds for Online Stochastic Matching. ESA (1) 2010: 170-181 - [c3]Ashish Goel, Michael Kapralov, Sanjeev Khanna:
Perfect matchings in o(n log n) time in regular bipartite graphs. STOC 2010: 39-46 - [i4]Ashish Goel, Michael Kapralov, Sanjeev Khanna:
Graph Sparsification via Refinement Sampling. CoRR abs/1004.4915 (2010) - [i3]Michael Kapralov, Rina Panigrahy:
Prediction strategies without loss. CoRR abs/1008.3672 (2010)
2000 – 2009
- 2009
- [c2]Ye Chen, Michael Kapralov, Dmitry Pavlov, John F. Canny:
Factor Modeling for Advertisement Targeting. NIPS 2009: 324-332 - [c1]Ashish Goel, Michael Kapralov, Sanjeev Khanna:
Perfect matchings via uniform sampling in regular bipartite graphs. SODA 2009: 11-17 - [i2]Ashish Goel, Michael Kapralov, Sanjeev Khanna:
Perfect Matchings in O(n \log n) Time in Regular Bipartite Graphs. CoRR abs/0909.3346 (2009) - 2008
- [j2]Mikhail Kapralov, Alexander Katsevich:
A Study of 1PI Algorithms for a General Class of Curves. SIAM J. Imaging Sci. 1(4): 418-459 (2008) - [i1]Ashish Goel, Michael Kapralov, Sanjeev Khanna:
Perfect Matchings via Uniform Sampling in Regular Bipartite Graphs. CoRR abs/0811.2457 (2008) - 2007
- [j1]Alexander Katsevich, Mikhail Kapralov:
Filtered Backprojection Inversion of the Cone Beam Transform for a General Class of Curves. SIAM J. Appl. Math. 68(2): 334-353 (2007)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-07-03 20:42 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint
the dblp computer science bibliography is fun