


Остановите войну!
for scientists:


default search action
Greg Ver Steeg
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [i71]Xianghao Kong, Rob Brekelmans, Greg Ver Steeg:
Information-Theoretic Diffusion. CoRR abs/2302.03792 (2023) - [i70]Umang Gupta, Tamoghna Chattopadhyay, Nikhil Dhinagar, Paul M. Thompson, Greg Ver Steeg, Alzheimer's Disease Neuroimaging Initiative:
Transferring Models Trained on Natural Images to 3D MRI via Position Encoded Slice Models. CoRR abs/2303.01491 (2023) - [i69]Rob Brekelmans, Sicong Huang, Marzyeh Ghassemi, Greg Ver Steeg, Roger B. Grosse, Alireza Makhzani:
Improving Mutual Information Estimation with Annealed and Energy-Based Bounds. CoRR abs/2303.06992 (2023) - [i68]Arghya Datta, Subhrangshu Nandi, Jingcheng Xu, Greg Ver Steeg, He Xie, Anoop Kumar, Aram Galstyan:
Measuring and Mitigating Local Instability in Deep Neural Networks. CoRR abs/2305.10625 (2023) - 2022
- [j9]Qiang Li
, Greg Ver Steeg
, Shujian Yu, Jesus Malo
:
Functional Connectome of the Human Brain with Total Correlation. Entropy 24(12): 1725 (2022) - [j8]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan:
A Metric Space for Point Process Excitations. J. Artif. Intell. Res. 73 (2022) - [c58]Umang Gupta, Jwala Dhamala, Varun Kumar, Apurv Verma, Yada Pruksachatkun, Satyapriya Krishna, Rahul Gupta, Kai-Wei Chang, Greg Ver Steeg, Aram Galstyan:
Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal. ACL (Findings) 2022: 658-678 - [c57]Tigran Galstyan, Hrayr Harutyunyan, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Failure Modes of Domain Generalization Algorithms. CVPR 2022: 19055-19064 - [c56]Rob Brekelmans, Sicong Huang, Marzyeh Ghassemi, Greg Ver Steeg, Roger Baker Grosse, Alireza Makhzani:
Improving Mutual Information Estimation with Annealed and Energy-Based Bounds. ICLR 2022 - [c55]Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan:
Formal limitations of sample-wise information-theoretic generalization bounds. ITW 2022: 440-445 - [c54]Dimitris Stripelis, Umang Gupta, Nikhil Dhinagar, Greg Ver Steeg, Paul M. Thompson, José Luis Ambite:
Towards Sparsified Federated Neuroimaging Models via Weight Pruning. DeCaF/FAIR@MICCAI 2022: 141-151 - [c53]Judith Gaspers, Anoop Kumar, Greg Ver Steeg, Aram Galstyan:
Temporal Generalization for Spoken Language Understanding. NAACL-HLT (Industry Papers) 2022: 37-44 - [c52]Elan Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Murali Annavaram, Aram Galstyan, Greg Ver Steeg:
StATIK: Structure and Text for Inductive Knowledge Graph Completion. NAACL-HLT (Findings) 2022: 604-615 - [i67]Marcin Abram, Keith Burghardt, Greg Ver Steeg, Aram Galstyan, Rémi Dingreville:
Inferring topological transitions in pattern-forming processes with self-supervised learning. CoRR abs/2203.10204 (2022) - [i66]Umang Gupta, Jwala Dhamala, Varun Kumar, Apurv Verma, Yada Pruksachatkun, Satyapriya Krishna, Rahul Gupta, Kai-Wei Chang, Greg Ver Steeg, Aram Galstyan:
Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal. CoRR abs/2203.12574 (2022) - [i65]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan:
Bounding the Effects of Continuous Treatments for Hidden Confounders. CoRR abs/2204.11206 (2022) - [i64]Dimitris Stripelis, Umang Gupta, Greg Ver Steeg, José Luis Ambite:
Federated Progressive Sparsification (Purge, Merge, Tune)+. CoRR abs/2204.12430 (2022) - [i63]Dimitris Stripelis, Umang Gupta, Hamza Saleem, Nikhil Dhinagar, Tanmay Ghai, Rafael Sanchez, Chrysovalantis Anastasiou, Armaghan Asghar, Greg Ver Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M. Thompson, José Luis Ambite:
Secure Federated Learning for Neuroimaging. CoRR abs/2205.05249 (2022) - [i62]Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan:
Formal limitations of sample-wise information-theoretic generalization bounds. CoRR abs/2205.06915 (2022) - [i61]Dimitris Stripelis, Umang Gupta, Nikhil Dhinagar, Greg Ver Steeg, Paul M. Thompson, José Luis Ambite:
Towards Sparsified Federated Neuroimaging Models via Weight Pruning. CoRR abs/2208.11669 (2022) - 2021
- [j7]Kyle Reing, Greg Ver Steeg
, Aram Galstyan:
Discovering Higher-Order Interactions Through Neural Information Decomposition. Entropy 23(1): 79 (2021) - [j6]Mehrnoosh Mirtaheri
, Sami Abu-El-Haija, Fred Morstatter
, Greg Ver Steeg, Aram Galstyan:
Identifying and Analyzing Cryptocurrency Manipulations in Social Media. IEEE Trans. Comput. Soc. Syst. 8(3): 607-617 (2021) - [c51]Umang Gupta, Aaron M. Ferber, Bistra Dilkina, Greg Ver Steeg:
Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation. AAAI 2021: 7610-7619 - [c50]James O'Neill, Greg Ver Steeg, Aram Galstyan:
Layer-Wise Neural Network Compression via Layer Fusion. ACML 2021: 1381-1396 - [c49]Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Influence Decompositions For Neural Network Attribution. AISTATS 2021: 2710-2718 - [c48]Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan:
Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning. ICLR 2021 - [c47]Umang Gupta, Pradeep K. Lam, Greg Ver Steeg, Paul M. Thompson:
Improved Brain Age Estimation With Slice-Based Set Networks. ISBI 2021: 840-844 - [c46]Umang Gupta, Dimitris Stripelis, Pradeep K. Lam, Paul M. Thompson, José Luis Ambite, Greg Ver Steeg:
Membership Inference Attacks on Deep Regression Models for Neuroimaging. MIDL 2021: 228-251 - [c45]Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar, Valentino Crespi, Greg Ver Steeg, Aram Galstyan:
Implicit SVD for Graph Representation Learning. NeurIPS 2021: 8419-8431 - [c44]Greg Ver Steeg, Aram Galstyan:
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling. NeurIPS 2021: 11012-11025 - [c43]Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, Aram Galstyan:
Information-theoretic generalization bounds for black-box learning algorithms. NeurIPS 2021: 24670-24682 - [c42]Vaden Masrani, Rob Brekelmans, Thang Bui, Frank Nielsen, Aram Galstyan, Greg Ver Steeg, Frank Wood:
q-Paths: Generalizing the geometric annealing path using power means. UAI 2021: 1938-1947 - [i60]Umang Gupta, Aaron M. Ferber, Bistra Dilkina, Greg Ver Steeg:
Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation. CoRR abs/2101.04108 (2021) - [i59]Elan Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan:
Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning. CoRR abs/2102.04350 (2021) - [i58]Umang Gupta, Pradeep Lam, Greg Ver Steeg, Paul Thompson:
Improved Brain Age Estimation with Slice-based Set Networks. CoRR abs/2102.04438 (2021) - [i57]Sami Abu-El-Haija, Valentino Crespi, Greg Ver Steeg, Aram Galstyan:
Fast Graph Learning with Unique Optimal Solutions. CoRR abs/2102.08530 (2021) - [i56]Umang Gupta, Dimitris Stripelis, Pradeep K. Lam, Paul M. Thompson, José Luis Ambite, Greg Ver Steeg:
Membership Inference Attacks on Deep Regression Models for Neuroimaging. CoRR abs/2105.02866 (2021) - [i55]Vaden Masrani, Rob Brekelmans, Thang Bui, Frank Nielsen, Aram Galstyan, Greg Ver Steeg, Frank Wood:
q-Paths: Generalizing the Geometric Annealing Path using Power Means. CoRR abs/2107.00745 (2021) - [i54]Dimitris Stripelis, Hamza Saleem, Tanmay Ghai, Nikhil Dhinagar, Umang Gupta, Chrysovalantis Anastasiou, Greg Ver Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M. Thompson, José Luis Ambite:
Secure Neuroimaging Analysis using Federated Learning with Homomorphic Encryption. CoRR abs/2108.03437 (2021) - [i53]Ninareh Mehrabi, Umang Gupta, Fred Morstatter, Greg Ver Steeg, Aram Galstyan:
Attributing Fair Decisions with Attention Interventions. CoRR abs/2109.03952 (2021) - [i52]Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, Aram Galstyan:
Information-theoretic generalization bounds for black-box learning algorithms. CoRR abs/2110.01584 (2021) - [i51]Greg Ver Steeg, Aram Galstyan:
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling. CoRR abs/2111.02434 (2021) - [i50]Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar, Valentino Crespi, Greg Ver Steeg, Aram Galstyan:
Implicit SVD for Graph Representation Learning. CoRR abs/2111.06312 (2021) - [i49]Tigran Galstyan, Hrayr Harutyunyan, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Failure Modes of Domain Generalization Algorithms. CoRR abs/2111.13733 (2021) - 2020
- [j5]Kyle Reing
, Greg Ver Steeg, Aram Galstyan:
Maximizing Multivariate Information With Error-Correcting Codes. IEEE Trans. Inf. Theory 66(5): 2683-2695 (2020) - [c41]Sahil Garg, Irina Rish, Guillermo A. Cecchi, Palash Goyal, Sarik Ghazarian, Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Modeling Dialogues with Hashcode Representations: A Nonparametric Approach. AAAI 2020: 3970-3979 - [c40]Ayush Jaiswal, Daniel Moyer, Greg Ver Steeg, Wael AbdAlmageed, Premkumar Natarajan:
Invariant Representations through Adversarial Forgetting. AAAI 2020: 4272-4279 - [c39]Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, Aram Galstyan:
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference. ICML 2020: 1111-1122 - [c38]Hrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Improving generalization by controlling label-noise information in neural network weights. ICML 2020: 4071-4081 - [i48]Hrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Improving Generalization by Controlling Label-Noise Information in Neural Network Weights. CoRR abs/2002.07933 (2020) - [i47]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan:
Event Cartography: Latent Point Process Embeddings. CoRR abs/2005.02515 (2020) - [i46]Daniel Moyer, Greg Ver Steeg, Paul M. Thompson:
Overview of Scanner Invariant Representations. CoRR abs/2006.00115 (2020) - [i45]Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, Aram Galstyan:
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference. CoRR abs/2007.00642 (2020) - [i44]Tigran Galstyan, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Robust Classification under Class-Dependent Domain Shift. CoRR abs/2007.05335 (2020) - [i43]James O'Neill, Greg Ver Steeg, Aram Galstyan:
Compressing Deep Neural Networks via Layer Fusion. CoRR abs/2007.14917 (2020) - [i42]Rob Brekelmans, Vaden Masrani, Thang Bui, Frank Wood, Aram Galstyan, Greg Ver Steeg, Frank Nielsen:
Annealed Importance Sampling with q-Paths. CoRR abs/2012.07823 (2020) - [i41]Rob Brekelmans, Frank Nielsen, Alireza Makhzani, Aram Galstyan, Greg Ver Steeg:
Likelihood Ratio Exponential Families. CoRR abs/2012.15480 (2020)
2010 – 2019
- 2019
- [c37]Sahil Garg, Aram Galstyan, Greg Ver Steeg, Irina Rish, Guillermo A. Cecchi, Shuyang Gao:
Kernelized Hashcode Representations for Relation Extraction. AAAI 2019: 6431-6440 - [c36]Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, Aram Galstyan:
Auto-Encoding Total Correlation Explanation. AISTATS 2019: 1157-1166 - [c35]Sahil Garg, Aram Galstyan, Greg Ver Steeg, Guillermo A. Cecchi:
Nearly-Unsupervised Hashcode Representations for Biomedical Relation Extraction. EMNLP/IJCNLP (1) 2019: 4024-4034 - [c34]Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan:
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. ICML 2019: 21-29 - [c33]Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg:
Exact Rate-Distortion in Autoencoders via Echo Noise. NeurIPS 2019: 3884-3895 - [c32]Greg Ver Steeg, Hrayr Harutyunyan, Daniel Moyer, Aram Galstyan:
Fast structure learning with modular regularization. NeurIPS 2019: 15567-15577 - [i40]Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Fred Morstatter, Greg Ver Steeg, Aram Galstyan:
Identifying and Analyzing Cryptocurrency Manipulations in Social Media. CoRR abs/1902.03110 (2019) - [i39]Daniel Moyer, Greg Ver Steeg, Chantal M. W. Tax, Paul M. Thompson:
Scanner Invariant Representations for Diffusion MRI Harmonization. CoRR abs/1904.05375 (2019) - [i38]Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg:
Exact Rate-Distortion in Autoencoders via Echo Noise. CoRR abs/1904.07199 (2019) - [i37]Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina Lerman, Greg Ver Steeg, Aram Galstyan:
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. CoRR abs/1905.00067 (2019) - [i36]Hrayr Harutyunyan, Daniel Moyer, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Efficient Covariance Estimation from Temporal Data. CoRR abs/1905.13276 (2019) - [i35]Sahil Garg, Aram Galstyan, Greg Ver Steeg, Guillermo A. Cecchi:
Nearly-Unsupervised Hashcode Representations for Relation Extraction. CoRR abs/1909.03881 (2019) - [i34]Ayush Jaiswal, Daniel Moyer, Greg Ver Steeg, Wael AbdAlmageed, Premkumar Natarajan:
Invariant Representations through Adversarial Forgetting. CoRR abs/1911.04060 (2019) - [i33]Ayush Jaiswal, Rob Brekelmans, Daniel Moyer, Greg Ver Steeg, Wael AbdAlmageed, Premkumar Natarajan:
Discovery and Separation of Features for Invariant Representation Learning. CoRR abs/1912.00646 (2019) - 2018
- [c31]Sahil Garg, Guillermo A. Cecchi, Irina Rish, Shuyang Gao, Greg Ver Steeg, Sarik Ghazarian, Palash Goyal, Aram Galstyan:
Dialogue Modeling Via Hash Functions. LaCATODA@IJCAI 2018: 24-36 - [c30]Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, Greg Ver Steeg:
Invariant Representations without Adversarial Training. NeurIPS 2018: 9102-9111 - [c29]Neal Lawton, Greg Ver Steeg, Aram Galstyan:
A Forest Mixture Bound for Block-Free Parallel Inference. UAI 2018: 968-977 - [i32]Sahil Garg, Greg Ver Steeg, Aram Galstyan:
Stochastic Learning of Nonstationary Kernels for Natural Language Modeling. CoRR abs/1801.03911 (2018) - [i31]Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, Aram Galstyan:
Auto-Encoding Total Correlation Explanation. CoRR abs/1802.05822 (2018) - [i30]Neal Lawton, Aram Galstyan, Greg Ver Steeg:
A Forest Mixture Bound for Block-Free Parallel Inference. CoRR abs/1805.06951 (2018) - [i29]Daniel Moyer, Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, Aram Galstyan:
Evading the Adversary in Invariant Representation. CoRR abs/1805.09458 (2018) - [i28]Daniel Moyer, Paul M. Thompson, Greg Ver Steeg:
Measures of Tractography Convergence. CoRR abs/1806.04634 (2018) - [i27]Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Maximizing Multivariate Information with Error-Correcting Codes. CoRR abs/1811.10839 (2018) - 2017
- [j4]Ryan J. Gallagher, Kyle Reing, David C. Kale, Greg Ver Steeg:
Anchored Correlation Explanation: Topic Modeling with Minimal Domain Knowledge. Trans. Assoc. Comput. Linguistics 5: 529-542 (2017) - [c28]Greg Ver Steeg, Rob Brekelmans, Hrayr Harutyunyan, Aram Galstyan:
Disentangled representations via synergy minimization. Allerton 2017: 180-187 - [c27]Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, Aram Galstyan:
Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social Networks (Extended Abstract). ICDE 2017: 57-58 - [c26]Greg Ver Steeg, Shuyang Gao, Kyle Reing, Aram Galstyan:
Sifting Common Information from Many Variables. IJCAI 2017: 2885-2892 - [c25]Greg Ver Steeg:
Unsupervised Learning via Total Correlation Explanation. IJCAI 2017: 5151-5155 - [c24]David Stück, Haraldur Tómas Hallgrímsson, Greg Ver Steeg, Alessandro Epasto
, Luca Foschini:
The Spread of Physical Activity Through Social Networks. WWW 2017: 519-528 - [i26]Greg Ver Steeg, Aram Galstyan:
Low Complexity Gaussian Latent Factor Models and a Blessing of Dimensionality. CoRR abs/1706.03353 (2017) - [i25]Wenzhe Li, Dong Guo, Greg Ver Steeg, Aram Galstyan:
Unifying Local and Global Change Detection in Dynamic Networks. CoRR abs/1710.03035 (2017) - [i24]Greg Ver Steeg, Rob Brekelmans, Hrayr Harutyunyan, Aram Galstyan:
Disentangled Representations via Synergy Minimization. CoRR abs/1710.03839 (2017) - [i23]Armen E. Allahverdyan, Greg Ver Steeg, Aram Galstyan:
Memory-induced mechanism for self-sustaining activity in networks. CoRR abs/1712.07844 (2017) - 2016
- [j3]Linhong Zhu
, Dong Guo, Junming Yin, Greg Ver Steeg, Aram Galstyan:
Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social Networks. IEEE Trans. Knowl. Data Eng. 28(10): 2765-2777 (2016) - [c23]Greg Ver Steeg, Aram Galstyan:
The Information Sieve. ICML 2016: 164-172 - [c22]Sarah K. Madsen, Greg Ver Steeg, Madelaine Daianu, Adam Mezher, Neda Jahanshad, Talia M. Nir, Xue Hua, Boris A. Gutman, Aram Galstyan, Paul M. Thompson
:
Relative value of diverse brain MRI and blood-based biomarkers for predicting cognitive decline in the elderly. Medical Imaging: Image Processing 2016: 978411 - [c21]Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Variational Information Maximization for Feature Selection. NIPS 2016: 487-495 - [c20]Yoon-Sik Cho, Greg Ver Steeg, Emilio Ferrara
, Aram Galstyan:
Latent Space Model for Multi-Modal Social Data. WWW 2016: 447-458 - [i22]Greg Ver Steeg, Shuyang Gao, Kyle Reing, Aram Galstyan:
Sifting Common Information from Many Variables. CoRR abs/1606.02307 (2016) - [i21]Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Variational Information Maximization for Feature Selection. CoRR abs/1606.02827 (2016) - [i20]Kyle Reing, David C. Kale, Greg Ver Steeg, Aram Galstyan:
Toward Interpretable Topic Discovery via Anchored Correlation Explanation. CoRR abs/1606.07043 (2016) - [i19]Ryan J. Gallagher, Kyle Reing, David C. Kale, Greg Ver Steeg:
Anchored Correlation Explanation: Topic Modeling with Minimal Domain Knowledge. CoRR abs/1611.10277 (2016) - 2015
- [c19]Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Efficient Estimation of Mutual Information for Strongly Dependent Variables. AISTATS 2015 - [c18]Greg Ver Steeg, Aram Galstyan:
Maximally Informative Hierarchical Representations of High-Dimensional Data. AISTATS 2015 - [c17]Sarah K. Madsen, Greg Ver Steeg, Adam Mezher, Neda Jahanshad, Talia M. Nir, Xue Hua, Boris A. Gutman, Aram Galstyan, Paul M. Thompson:
Information-theoretic characterization of blood panel predictors for brain atrophy and cognitive decline in the elderly. ISBI 2015: 980-984 - [c16]Madelaine Daianu, Greg Ver Steeg, Adam Mezher, Neda Jahanshad, Talia M. Nir, Xiaoran Yan
, Gautam Prasad, Kristina Lerman, Aram Galstyan, Paul M. Thompson
:
Information-Theoretic Clustering of Neuroimaging Metrics Related to Cognitive Decline in the Elderly. MCV@MICCAI 2015: 13-23 - [c15]Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Estimating Mutual Information by Local Gaussian Approximation. UAI 2015: 278-285 - [c14]Nathan O. Hodas, Greg Ver Steeg, Joshua J. Harrison, Satish Chikkagoudar
, Eric Bell, Courtney D. Corley:
Disentangling the Lexicons of Disaster Response in Twitter. WWW (Companion Volume) 2015: 1201-1204 - [i18]Greg Ver Steeg, Aram Galstyan:
The Information Sieve. CoRR abs/1507.02284 (2015) - [i17]Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Estimating Mutual Information by Local Gaussian Approximation. CoRR abs/1508.00536 (2015) - [i16]Yoon-Sik Cho, Greg Ver Steeg, Emilio Ferrara, Aram Galstyan:
Latent Space Model for Multi-Modal Social Data. CoRR abs/1510.05318 (2015) - 2014
- [j2]Vasanthan Raghavan, Greg Ver Steeg, Aram Galstyan, Alexander G. Tartakovsky
:
Modeling Temporal Activity Patterns in Dynamic Social Networks. IEEE Trans. Comput. Soc. Syst. 1(1): 89-107 (2014) - [c13]Yoon-Sik Cho, Greg Ver Steeg, Aram Galstyan:
Where and Why Users "Check In". AAAI 2014: 269-275 - [c12]Greg Ver Steeg, Aram Galstyan, Fei Sha, Simon DeDeo:
Demystifying Information-Theoretic Clustering. ICML 2014: 19-27 - [c11]Greg Ver Steeg, Aram Galstyan:
Discovering Structure in High-Dimensional Data Through Correlation Explanation. NIPS 2014: 577-585 - [r1]Yoon-Sik Cho, Greg Ver Steeg, Aram Galstyan:
Mixed Membership Blockmodels for Dynamic Networks with Feedback. Handbook of Mixed Membership Models and Their Applications 2014: 527-545 - [i15]Greg Ver Steeg, Aram Galstyan:
Discovering Structure in High-Dimensional Data Through Correlation Explanation. CoRR abs/1406.1222 (2014) - [i14]Greg Ver Steeg, Aram Galstyan:
Maximally Informative Hierarchical Representations of High-Dimensional Data. CoRR abs/1410.7404 (2014) - [i13]Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Efficient Estimation of Mutual Information for Strongly Dependent Variables. CoRR abs/1411.2003 (2014) - [i12]Linhong Zhu, Greg Ver Steeg, Aram Galstyan:
Scalable Link Prediction in Dynamic Networks via Non-Negative Matrix Factorization. CoRR abs/1411.3675 (2014) - [i11]Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Understanding confounding effects in linguistic coordination: an information-theoretic approach. CoRR abs/1412.0696 (2014) - 2013
- [c10]Greg Ver Steeg, Aram Galstyan:
Statistical Tests for Contagion in Observational Social Network Studies. AISTATS 2013: 563-571 - [c9]Vasanthan Raghavan, Greg Ver Steeg, Aram Galstyan, Alexander G. Tartakovsky
:
Coupled hidden markov models for user activity in social networks. ICME Workshops 2013: 1-6 - [c8]Greg Ver Steeg, Aram Galstyan:
Information-theoretic measures of influence based on content dynamics. WSDM 2013: 3-12 - [i10]Vasanthan Raghavan, Greg Ver Steeg, Aram Galstyan, Alexander G. Tartakovsky:
Modeling Temporal Activity Patterns in Dynamic Social Networks. CoRR abs/1305.1980 (2013) - [i9]Greg Ver Steeg, Aram Galstyan, Fei Sha, Simon DeDeo:
Demystifying Information-Theoretic Clustering. CoRR abs/1310.4210 (2013) - [i8]Greg Ver Steeg, Cristopher Moore, Aram Galstyan, Armen E. Allahverdyan:
Phase Transitions in Community Detection: A Solvable Toy Model. CoRR abs/1312.0631 (2013) - 2012
- [c7]Greg Ver Steeg:
Information Theoretic Tools for Social Media. #MSM 2012: 1 - [c6]Greg Ver Steeg, Aram Galstyan:
Information transfer in social media. WWW 2012: 509-518 - [i7]Greg Ver Steeg, Aram Galstyan:
Inferring Predictive Links in Social Media Using Content Transfer. CoRR abs/1208.4475 (2012) - [i6]