default search action
Dmitry P. Vetrov
Person information
- affiliation: Samsung AI Center Moscow, Russia
- affiliation: National Research University Higher School of Economics (HSE), Moscow, Russia
- affiliation: Skolkovo Institute of Science and Technology, Moscow Russia
- affiliation: Moscow State University (MSU), Department of Computational Mathematics and Cybernetics, Russia
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c78]Daniil Tiapkin, Nikita Morozov, Alexey Naumov, Dmitry P. Vetrov:
Generative Flow Networks as Entropy-Regularized RL. AISTATS 2024: 4213-4221 - [c77]Nikita Morozov, Denis Rakitin, Oleg Desheulin, Dmitry P. Vetrov, Kirill Struminsky:
Differentiable Rendering with Reparameterized Volume Sampling. AISTATS 2024: 4852-4860 - [c76]Artem Tsypin, Leonid Ugadiarov, Kuzma Khrabrov, Alexander Telepov, Egor Rumiantsev, Alexey Skrynnik, Aleksandr Panov, Dmitry P. Vetrov, Elena Tutubalina, Artur Kadurin:
Gradual Optimization Learning for Conformational Energy Minimization. ICLR 2024 - [c75]Grigory Bartosh, Dmitry P. Vetrov, Christian A. Naesseth:
Neural Diffusion Models. ICML 2024 - [c74]Andrey Okhotin, Dmitry Molchanov, Vladimir Arkhipkin, Grigory Bartosh, Viktor Ohanesian, Aibek Alanov, Dmitry P. Vetrov:
Star-Shaped Denoising Diffusion Probabilistic Models (Extended Abstract). KI 2024: 355-359 - [i73]Alexander Shabalin, Viacheslav Meshchaninov, Tingir Badmaev, Dmitry Molchanov, Grigory Bartosh, Sergey Markov, Dmitry P. Vetrov:
TEncDM: Understanding the Properties of Diffusion Model in the Space of Language Model Encodings. CoRR abs/2402.19097 (2024) - [i72]Viacheslav Meshchaninov, Pavel V. Strashnov, Andrey Shevtsov, Fedor Nikolaev, Nikita Ivanisenko, Olga L. Kardymon, Dmitry P. Vetrov:
Diffusion on language model embeddings for protein sequence generation. CoRR abs/2403.03726 (2024) - [i71]Maxim Nikolaev, Mikhail Kuznetsov, Dmitry P. Vetrov, Aibek Alanov:
HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach. CoRR abs/2404.01094 (2024) - [i70]Grigory Bartosh, Dmitry P. Vetrov, Christian A. Naesseth:
Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling. CoRR abs/2404.12940 (2024) - 2023
- [c73]Maxim Kodryan, Dmitry Kropotov, Dmitry P. Vetrov:
MARS: Masked Automatic Ranks Selection in Tensor Decompositions. AISTATS 2023: 3718-3732 - [c72]Pavel Andreev, Aibek Alanov, Oleg Ivanov, Dmitry P. Vetrov:
HIFI++: A Unified Framework for Bandwidth Extension and Speech Enhancement. ICASSP 2023: 1-5 - [c71]Aibek Alanov, Vadim Titov, Maksim Nakhodnov, Dmitry P. Vetrov:
StyleDomain: Efficient and Lightweight Parameterizations of StyleGAN for One-shot and Few-shot Domain Adaptation. ICCV 2023: 2184-2194 - [c70]Anastasiia Iashchenko, Pavel Andreev, Ivan Shchekotov, Nicholas Babaev, Dmitry P. Vetrov:
UnDiff: Unsupervised Voice Restoration with Unconditional Diffusion Model. INTERSPEECH 2023: 4294-4298 - [c69]Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P. Vetrov, Evgeny Burnaev:
Entropic Neural Optimal Transport via Diffusion Processes. NeurIPS 2023 - [c68]Andrey Okhotin, Dmitry Molchanov, Vladimir Arkhipkin, Grigory Bartosh, Viktor Ohanesian, Aibek Alanov, Dmitry P. Vetrov:
Star-Shaped Denoising Diffusion Probabilistic Models. NeurIPS 2023 - [c67]Ildus Sadrtdinov, Dmitrii Pozdeev, Dmitry P. Vetrov, Ekaterina Lobacheva:
To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning. NeurIPS 2023 - [i69]Andrey Okhotin, Dmitry Molchanov, Vladimir Arkhipkin, Grigory Bartosh, Aibek Alanov, Dmitry P. Vetrov:
Star-Shaped Denoising Diffusion Probabilistic Models. CoRR abs/2302.05259 (2023) - [i68]Nikita Morozov, Denis Rakitin, Oleg Desheulin, Dmitry P. Vetrov, Kirill Struminsky:
Differentiable Rendering with Reparameterized Volume Sampling. CoRR abs/2302.10970 (2023) - [i67]Ildus Sadrtdinov, Dmitrii Pozdeev, Dmitry P. Vetrov, Ekaterina Lobacheva:
To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning. CoRR abs/2303.03374 (2023) - [i66]Anastasiia Iashchenko, Pavel Andreev, Ivan Shchekotov, Nicholas Babaev, Dmitry P. Vetrov:
UnDiff: Unsupervised Voice Restoration with Unconditional Diffusion Model. CoRR abs/2306.00721 (2023) - [i65]Grigory Bartosh, Dmitry P. Vetrov, Christian A. Naesseth:
Neural Diffusion Models. CoRR abs/2310.08337 (2023) - [i64]Daniil Tiapkin, Nikita Morozov, Alexey Naumov, Dmitry P. Vetrov:
Generative Flow Networks as Entropy-Regularized RL. CoRR abs/2310.12934 (2023) - [i63]Artem Tsypin, Leonid Ugadiarov, Kuzma Khrabrov, Manvel Avetisian, Alexander Telepov, Egor Rumiantsev, Alexey Skrynnik, Aleksandr I. Panov, Dmitry P. Vetrov, Elena Tutubalina, Artur Kadurin:
Gradual Optimization Learning for Conformational Energy Minimization. CoRR abs/2311.06295 (2023) - [i62]Ekaterina Lobacheva, Eduard Pockonechnyy, Maxim Kodryan, Dmitry P. Vetrov:
Large Learning Rates Improve Generalization: But How Large Are We Talking About? CoRR abs/2311.11303 (2023) - 2022
- [c66]Ivan Shchekotov, Pavel K. Andreev, Oleg Ivanov, Aibek Alanov, Dmitry P. Vetrov:
FFC-SE: Fast Fourier Convolution for Speech Enhancement. INTERSPEECH 2022: 1188-1192 - [c65]Aibek Alanov, Vadim Titov, Dmitry P. Vetrov:
HyperDomainNet: Universal Domain Adaptation for Generative Adversarial Networks. NeurIPS 2022 - [c64]Maxim Kodryan, Ekaterina Lobacheva, Maksim Nakhodnov, Dmitry P. Vetrov:
Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three Regimes. NeurIPS 2022 - [i61]Pavel Andreev, Aibek Alanov, Oleg Ivanov, Dmitry P. Vetrov:
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement. CoRR abs/2203.13086 (2022) - [i60]Ivan Shchekotov, Pavel Andreev, Oleg Ivanov, Aibek Alanov, Dmitry P. Vetrov:
FFC-SE: Fast Fourier Convolution for Speech Enhancement. CoRR abs/2204.03042 (2022) - [i59]Maxim Kodryan, Ekaterina Lobacheva, Maksim Nakhodnov, Dmitry P. Vetrov:
Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three Regimes. CoRR abs/2209.03695 (2022) - [i58]Aibek Alanov, Vadim Titov, Dmitry P. Vetrov:
HyperDomainNet: Universal Domain Adaptation for Generative Adversarial Networks. CoRR abs/2210.08884 (2022) - [i57]Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P. Vetrov, Evgeny Burnaev:
Entropic Neural Optimal Transport via Diffusion Processes. CoRR abs/2211.01156 (2022) - [i56]Aibek Alanov, Vadim Titov, Maksim Nakhodnov, Dmitry P. Vetrov:
StyleDomain: Analysis of StyleSpace for Domain Adaptation of StyleGAN. CoRR abs/2212.10229 (2022) - 2021
- [c63]Kirill Struminsky, Artyom Gadetsky, Denis Rakitin, Danil Karpushkin, Dmitry P. Vetrov:
Leveraging Recursive Gumbel-Max Trick for Approximate Inference in Combinatorial Spaces. NeurIPS 2021: 10999-11011 - [c62]Ekaterina Lobacheva, Maxim Kodryan, Nadezhda Chirkova, Andrey Malinin, Dmitry P. Vetrov:
On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay. NeurIPS 2021: 21545-21556 - [i55]Vyacheslav Alipov, Riley Simmons-Edler, Nikita Putintsev, Pavel Kalinin, Dmitry P. Vetrov:
Towards Practical Credit Assignment for Deep Reinforcement Learning. CoRR abs/2106.04499 (2021) - [i54]Arsenii Ashukha, Andrei Atanov, Dmitry P. Vetrov:
Mean Embeddings with Test-Time Data Augmentation for Ensembling of Representations. CoRR abs/2106.08038 (2021) - [i53]Ekaterina Lobacheva, Maxim Kodryan, Nadezhda Chirkova, Andrey Malinin, Dmitry P. Vetrov:
On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay. CoRR abs/2106.15739 (2021) - [i52]Pavel Andreev, Alexander Fritzler, Dmitry P. Vetrov:
Quantization of Generative Adversarial Networks for Efficient Inference: a Methodological Study. CoRR abs/2108.13996 (2021) - [i51]Arsenii Kuznetsov, Alexander Grishin, Artem Tsypin, Arsenii Ashukha, Dmitry P. Vetrov:
Automating Control of Overestimation Bias for Continuous Reinforcement Learning. CoRR abs/2110.13523 (2021) - [i50]Kirill Struminsky, Artyom Gadetsky, Denis Rakitin, Danil Karpushkin, Dmitry P. Vetrov:
Leveraging Recursive Gumbel-Max Trick for Approximate Inference in Combinatorial Spaces. CoRR abs/2110.15072 (2021) - [i49]Evgeny Bobrov, Sergey Troshin, Nadezhda Chirkova, Ekaterina Lobacheva, Sviatoslav Panchenko, Dmitry P. Vetrov, Dmitry Kropotov:
Machine Learning Methods for Spectral Efficiency Prediction in Massive MIMO Systems. CoRR abs/2112.14423 (2021) - 2020
- [c61]Ekaterina Lobacheva, Nadezhda Chirkova, Alexander Markovich, Dmitry P. Vetrov:
Structured Sparsification of Gated Recurrent Neural Networks. AAAI 2020: 4989-4996 - [c60]Artyom Gadetsky, Kirill Struminsky, Christopher Robinson, Novi Quadrianto, Dmitry P. Vetrov:
Low-Variance Black-Box Gradient Estimates for the Plackett-Luce Distribution. AAAI 2020: 10126-10135 - [c59]Daniil Polykovskiy, Dmitry P. Vetrov:
Deterministic Decoding for Discrete Data in Variational Autoencoders. AISTATS 2020: 3046-3056 - [c58]Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, Dmitry P. Vetrov:
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning. ICLR 2020 - [c57]Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, Dmitry P. Vetrov:
Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics. ICML 2020: 5556-5566 - [c56]Kirill Neklyudov, Max Welling, Evgenii Egorov, Dmitry P. Vetrov:
Involutive MCMC: a Unifying Framework. ICML 2020: 7273-7282 - [c55]Ekaterina Lobacheva, Nadezhda Chirkova, Maxim Kodryan, Dmitry P. Vetrov:
On Power Laws in Deep Ensembles. NeurIPS 2020 - [c54]Alexander Lyzhov, Yuliya Molchanova, Arsenii Ashukha, Dmitry Molchanov, Dmitry P. Vetrov:
Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation. UAI 2020: 1308-1317 - [c53]Aibek Alanov, Max Kochurov, Denis Volkhonskiy, Daniil Yashkov, Evgeny Burnaev, Dmitry P. Vetrov:
User-controllable Multi-texture Synthesis with Generative Adversarial Networks. VISIGRAPP (4: VISAPP) 2020: 214-221 - [i48]Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, Dmitry P. Vetrov:
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning. CoRR abs/2002.06470 (2020) - [i47]Dmitry Molchanov, Alexander Lyzhov, Yuliya Molchanova, Arsenii Ashukha, Dmitry P. Vetrov:
Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation. CoRR abs/2002.09103 (2020) - [i46]Viktor Oganesyan, Alexandra Volokhova, Dmitry P. Vetrov:
Stochasticity in Neural ODEs: An Empirical Study. CoRR abs/2002.09779 (2020) - [i45]Daniil Polykovskiy, Dmitry P. Vetrov:
Deterministic Decoding for Discrete Data in Variational Autoencoders. CoRR abs/2003.02174 (2020) - [i44]Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, Dmitry P. Vetrov:
Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics. CoRR abs/2005.04269 (2020) - [i43]Nadezhda Chirkova, Ekaterina Lobacheva, Dmitry P. Vetrov:
Deep Ensembles on a Fixed Memory Budget: One Wide Network or Several Thinner Ones? CoRR abs/2005.07292 (2020) - [i42]Viktor Yanush, Alexander Shekhovtsov, Dmitry Molchanov, Dmitry P. Vetrov:
Reintroducing Straight-Through Estimators as Principled Methods for Stochastic Binary Networks. CoRR abs/2006.06880 (2020) - [i41]Maxim Kodryan, Dmitry Kropotov, Dmitry P. Vetrov:
MARS: Masked Automatic Ranks Selection in Tensor Decompositions. CoRR abs/2006.10859 (2020) - [i40]Kirill Neklyudov, Max Welling, Evgenii Egorov, Dmitry P. Vetrov:
Involutive MCMC: a Unifying Framework. CoRR abs/2006.16653 (2020) - [i39]Ekaterina Lobacheva, Nadezhda Chirkova, Maxim Kodryan, Dmitry P. Vetrov:
On Power Laws in Deep Ensembles. CoRR abs/2007.08483 (2020)
2010 – 2019
- 2019
- [c52]Kirill Struminsky, Dmitry P. Vetrov:
A Simple Method to Evaluate Support Size and Non-uniformity of a Decoder-Based Generative Model. AIST 2019: 81-93 - [c51]Dmitry Molchanov, Valery Kharitonov, Artem Sobolev, Dmitry P. Vetrov:
Doubly Semi-Implicit Variational Inference. AISTATS 2019: 2593-2602 - [c50]Andrei Atanov, Arsenii Ashukha, Kirill Struminsky, Dmitry P. Vetrov, Max Welling:
The Deep Weight Prior. ICLR (Poster) 2019 - [c49]Oleg Ivanov, Michael Figurnov, Dmitry P. Vetrov:
Variational Autoencoder with Arbitrary Conditioning. ICLR (Poster) 2019 - [c48]Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, Dmitry P. Vetrov:
Variance Networks: When Expectation Does Not Meet Your Expectations. ICLR (Poster) 2019 - [c47]Andrei Atanov, Arsenii Ashukha, Dmitry Molchanov, Kirill Neklyudov, Dmitry P. Vetrov:
Uncertainty Estimation via Stochastic Batch Normalization. ISNN (1) 2019: 261-269 - [c46]Artem Sobolev, Dmitry P. Vetrov:
Importance Weighted Hierarchical Variational Inference. NeurIPS 2019: 601-613 - [c45]Maksim Kuznetsov, Daniil Polykovskiy, Dmitry P. Vetrov, Alexander Zhebrak:
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models. NeurIPS 2019: 4104-4114 - [c44]Wesley J. Maddox, Pavel Izmailov, Timur Garipov, Dmitry P. Vetrov, Andrew Gordon Wilson:
A Simple Baseline for Bayesian Uncertainty in Deep Learning. NeurIPS 2019: 13132-13143 - [c43]Kirill Neklyudov, Evgenii Egorov, Dmitry P. Vetrov:
The Implicit Metropolis-Hastings Algorithm. NeurIPS 2019: 13932-13942 - [c42]Maxim Kodryan, Artem M. Grachev, Dmitry I. Ignatov, Dmitry P. Vetrov:
Efficient Language Modeling with Automatic Relevance Determination in Recurrent Neural Networks. RepL4NLP@ACL 2019: 40-48 - [c41]Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry P. Vetrov, Andrew Gordon Wilson:
Subspace Inference for Bayesian Deep Learning. UAI 2019: 1169-1179 - [i38]Wesley J. Maddox, Timur Garipov, Pavel Izmailov, Dmitry P. Vetrov, Andrew Gordon Wilson:
A Simple Baseline for Bayesian Uncertainty in Deep Learning. CoRR abs/1902.02476 (2019) - [i37]Aibek Alanov, Max Kochurov, Denis Volkhonskiy, Daniil Yashkov, Evgeny Burnaev, Dmitry P. Vetrov:
User-Controllable Multi-Texture Synthesis with Generative Adversarial Networks. CoRR abs/1904.04751 (2019) - [i36]Andrei Atanov, Alexandra Volokhova, Arsenii Ashukha, Ivan Sosnovik, Dmitry P. Vetrov:
Semi-Conditional Normalizing Flows for Semi-Supervised Learning. CoRR abs/1905.00505 (2019) - [i35]Artem Sobolev, Dmitry P. Vetrov:
Importance Weighted Hierarchical Variational Inference. CoRR abs/1905.03290 (2019) - [i34]Kirill Neklyudov, Evgenii Egorov, Dmitry P. Vetrov:
The Implicit Metropolis-Hastings Algorithm. CoRR abs/1906.03644 (2019) - [i33]Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry P. Vetrov, Andrew Gordon Wilson:
Subspace Inference for Bayesian Deep Learning. CoRR abs/1907.07504 (2019) - [i32]Maksim Kuznetsov, Daniil Polykovskiy, Dmitry P. Vetrov, Alexander Zhebrak:
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models. CoRR abs/1910.13148 (2019) - [i31]Ekaterina Lobacheva, Nadezhda Chirkova, Alexander Markovich, Dmitry P. Vetrov:
Structured Sparsification of Gated Recurrent Neural Networks. CoRR abs/1911.05585 (2019) - [i30]Artyom Gadetsky, Kirill Struminsky, Christopher Robinson, Novi Quadrianto, Dmitry P. Vetrov:
Low-variance Black-box Gradient Estimates for the Plackett-Luce Distribution. CoRR abs/1911.10036 (2019) - [i29]Diego Granziol, Xingchen Wan, Timur Garipov, Dmitry P. Vetrov, Stephen Roberts:
MLRG Deep Curvature. CoRR abs/1912.09656 (2019) - 2018
- [c40]Artyom Gadetsky, Ilya Yakubovskiy, Dmitry P. Vetrov:
Conditional Generators of Words Definitions. ACL (2) 2018: 266-271 - [c39]Iurii Kemaev, Daniil Polykovskiy, Dmitry P. Vetrov:
ReSet: Learning Recurrent Dynamic Routing in ResNet-like Neural Networks. ACML 2018: 422-437 - [c38]Sergey Bartunov, Dmitry P. Vetrov:
Few-shot Generative Modelling with Generative Matching Networks. AISTATS 2018: 670-678 - [c37]Nadezhda Chirkova, Ekaterina Lobacheva, Dmitry P. Vetrov:
Bayesian Compression for Natural Language Processing. EMNLP 2018: 2910-2915 - [c36]Andrei Atanov, Arsenii Ashukha, Dmitry Molchanov, Kirill Neklyudov, Dmitry P. Vetrov:
Uncertainty Estimation via Stochastic Batch Normalization. ICLR (Workshop) 2018 - [c35]Max Kochurov, Timur Garipov, Dmitry Podoprikhin, Dmitry Molchanov, Arsenii Ashukha, Dmitry P. Vetrov:
Bayesian Incremental Learning for Deep Neural Networks. ICLR (Workshop) 2018 - [c34]Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P. Vetrov, Andrew Gordon Wilson:
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. NeurIPS 2018: 8803-8812 - [c33]Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, Andrew Gordon Wilson:
Averaging Weights Leads to Wider Optima and Better Generalization. UAI 2018: 876-885 - [i28]Andrei Atanov, Arsenii Ashukha, Dmitry Molchanov, Kirill Neklyudov, Dmitry P. Vetrov:
Uncertainty Estimation via Stochastic Batch Normalization. CoRR abs/1802.04893 (2018) - [i27]Max Kochurov, Timur Garipov, Dmitry Podoprikhin, Dmitry Molchanov, Arsenii Ashukha, Dmitry P. Vetrov:
Bayesian Incremental Learning for Deep Neural Networks. CoRR abs/1802.07329 (2018) - [i26]Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P. Vetrov, Andrew Gordon Wilson:
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. CoRR abs/1802.10026 (2018) - [i25]Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, Andrew Gordon Wilson:
Averaging Weights Leads to Wider Optima and Better Generalization. CoRR abs/1803.05407 (2018) - [i24]Oleg Ivanov, Michael Figurnov, Dmitry P. Vetrov:
Universal Conditional Machine. CoRR abs/1806.02382 (2018) - [i23]Artyom Gadetsky, Ilya Yakubovskiy, Dmitry P. Vetrov:
Conditional Generators of Words Definitions. CoRR abs/1806.10090 (2018) - [i22]Dmitry Molchanov, Valery Kharitonov, Artem Sobolev, Dmitry P. Vetrov:
Doubly Semi-Implicit Variational Inference. CoRR abs/1810.02789 (2018) - [i21]Aibek Alanov, Max Kochurov, Daniil Yashkov, Dmitry P. Vetrov:
Pairwise Augmented GANs with Adversarial Reconstruction Loss. CoRR abs/1810.04920 (2018) - [i20]Andrei Atanov, Arsenii Ashukha, Kirill Struminsky, Dmitry P. Vetrov, Max Welling:
The Deep Weight Prior. Modeling a prior distribution for CNNs using generative models. CoRR abs/1810.06943 (2018) - [i19]Kirill Neklyudov, Pavel Shvechikov, Dmitry P. Vetrov:
Metropolis-Hastings view on variational inference and adversarial training. CoRR abs/1810.07151 (2018) - [i18]Nadezhda Chirkova, Ekaterina Lobacheva, Dmitry P. Vetrov:
Bayesian Compression for Natural Language Processing. CoRR abs/1810.10927 (2018) - [i17]Valery Kharitonov, Dmitry Molchanov, Dmitry P. Vetrov:
Variational Dropout via Empirical Bayes. CoRR abs/1811.00596 (2018) - [i16]Iurii Kemaev, Daniil Polykovskiy, Dmitry P. Vetrov:
ReSet: Learning Recurrent Dynamic Routing in ResNet-like Neural Networks. CoRR abs/1811.04380 (2018) - [i15]Ekaterina Lobacheva, Nadezhda Chirkova, Dmitry P. Vetrov:
Bayesian Sparsification of Gated Recurrent Neural Networks. CoRR abs/1812.05692 (2018) - 2017
- [c32]Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry P. Vetrov, Ruslan Salakhutdinov:
Spatially Adaptive Computation Time for Residual Networks. CVPR 2017: 1790-1799 - [c31]Sergey Bartunov, Dmitry P. Vetrov:
Fast Adaptation in Generative Models with Generative Matching Networks. ICLR (Workshop) 2017 - [c30]Dmitry Molchanov, Arsenii Ashukha, Dmitry P. Vetrov:
Variational Dropout Sparsifies Deep Neural Networks. ICML 2017: 2498-2507 - [c29]Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, Dmitry P. Vetrov:
Structured Bayesian Pruning via Log-Normal Multiplicative Noise. NIPS 2017: 6775-6784 - [i14]Dmitry Molchanov, Arsenii Ashukha, Dmitry P. Vetrov:
Variational Dropout Sparsifies Deep Neural Networks. CoRR abs/1701.05369 (2017) - [i13]Ekaterina Lobacheva, Nadezhda Chirkova, Dmitry P. Vetrov:
Bayesian Sparsification of Recurrent Neural Networks. CoRR abs/1708.00077 (2017) - [i12]Michael Figurnov, Artem Sobolev, Dmitry P. Vetrov:
Probabilistic Adaptive Computation Time. CoRR abs/1712.00386 (2017) - 2016
- [j4]Mikhail Belyaev, Evgeny Burnaev, Ermek Kapushev, Maxim Panov, Pavel V. Prikhodko, Dmitry P. Vetrov, Dmitry Yarotsky:
GTApprox: Surrogate modeling for industrial design. Adv. Eng. Softw. 102: 29-39 (2016) - [c28]Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin, Dmitry P. Vetrov:
Breaking Sticks and Ambiguities with Adaptive Skip-gram. AISTATS 2016: 130-138 - [c27]Alexander Kirillov, Mikhail Gavrikov, Ekaterina Lobacheva, Anton Osokin, Dmitry P. Vetrov:
Deep Part-Based Generative Shape Model with Latent Variables. BMVC 2016 - [c26]Mikhail Figurnov, Aizhan Ibraimova, Dmitry P. Vetrov, Pushmeet Kohli:
PerforatedCNNs: Acceleration through Elimination of Redundant Convolutions. NIPS 2016: 947-955 - [c25]Kirill Struminsky, Stanislav Kruglik, Dmitry P. Vetrov, Ivan V. Oseledets:
A new approach for sparse Bayesian channel estimation in SCMA uplink systems. WCSP 2016: 1-5 - [i11]Mikhail Belyaev, Evgeny Burnaev, Ermek Kapushev, Maxim Panov, Pavel V. Prikhodko, Dmitry P. Vetrov, Dmitry Yarotsky:
GTApprox: surrogate modeling for industrial design. CoRR abs/1609.01088 (2016) - [i10]Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, Dmitry P. Vetrov:
Ultimate tensorization: compressing convolutional and FC layers alike. CoRR abs/1611.03214 (2016) - [i9]Michael Figurnov, Kirill Struminsky, Dmitry P. Vetrov:
Robust Variational Inference. CoRR abs/1611.09226 (2016) - [i8]Sergey Bartunov, Dmitry P. Vetrov:
Fast Adaptation in Generative Models with Generative Matching Networks. CoRR abs/1612.02192 (2016) - [i7]Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry P. Vetrov, Ruslan Salakhutdinov:
Spatially Adaptive Computation Time for Residual Networks. CoRR abs/1612.02297 (2016) - 2015
- [j3]Anton Osokin, Dmitry P. Vetrov:
Submodular Relaxation for Inference in Markov Random Fields. IEEE Trans. Pattern Anal. Mach. Intell. 37(7): 1347-1359 (2015) - [c24]Alexander Kirillov, Bogdan Savchynskyy, Dmitrij Schlesinger, Dmitry P. Vetrov, Carsten Rother:
Inferring M-Best Diverse Labelings in a Single One. ICCV 2015: 1814-1822 - [c23]Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry P. Vetrov:
Tensorizing Neural Networks. NIPS 2015: 442-450 - [c22]