
Matthias Hein 0001
Person information
- affiliation: Max Planck Institute for Intelligent Systems, Tübingen, Germany
- affiliation: Faculty of Mathematics and Computer Science, Saarland University
- affiliation: Max Planck Institute for Biological Cybernetics, Tübingen, Germany
Other persons with the same name
- Matthias Hein 0002
(aka: Matthias A. Hein) — Technische Universität Ilmenau, Faculty of Computer Science and Automation, Germany
- Matthias Hein 0003 — University of Wuppertal, Department of Physics, Germany
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2020
- [j18]Nicolás García Trillos, Moritz Gerlach, Matthias Hein, Dejan Slepcev:
Error Estimates for Spectral Convergence of the Graph Laplacian on Random Geometric Graphs Toward the Laplace-Beltrami Operator. Found. Comput. Math. 20(4): 827-887 (2020) - [j17]Francesco Croce, Jonas Rauber, Matthias Hein:
Scaling up the Randomized Gradient-Free Adversarial Attack Reveals Overestimation of Robustness Using Established Attacks. Int. J. Comput. Vis. 128(4): 1028-1046 (2020) - [c66]Maximilian Augustin, Alexander Meinke, Matthias Hein:
Adversarial Robustness on In- and Out-Distribution Improves Explainability. ECCV (26) 2020: 228-245 - [c65]Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, Matthias Hein:
Square Attack: A Query-Efficient Black-Box Adversarial Attack via Random Search. ECCV (23) 2020: 484-501 - [c64]Francesco Croce, Matthias Hein:
Provable robustness against all adversarial $l_p$-perturbations for $p\geq 1$. ICLR 2020 - [c63]Alexander Meinke, Matthias Hein:
Towards neural networks that provably know when they don't know. ICLR 2020 - [c62]Francesco Croce, Matthias Hein:
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack. ICML 2020: 2196-2205 - [c61]Francesco Croce, Matthias Hein:
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. ICML 2020: 2206-2216 - [c60]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks. ICML 2020: 5436-5446 - [c59]David Stutz, Matthias Hein, Bernt Schiele:
Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks. ICML 2020: 9155-9166 - [c58]Julian Bitterwolf, Alexander Meinke, Matthias Hein:
Certifiably Adversarially Robust Detection of Out-of-Distribution Data. NeurIPS 2020 - [i64]Antoine Gautier, Matthias Hein, Francesco Tudisco:
Computing the norm of nonnegative matrices and the log-Sobolev constant of Markov chains. CoRR abs/2002.02447 (2020) - [i63]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks. CoRR abs/2002.10118 (2020) - [i62]Francesco Croce, Matthias Hein:
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. CoRR abs/2003.01690 (2020) - [i61]Maximilian Augustin, Alexander Meinke, Matthias Hein:
Adversarial Robustness on In- and Out-Distribution Improves Explainability. CoRR abs/2003.09461 (2020) - [i60]Francesco Croce, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion, Matthias Hein:
Sparse-RS: a versatile framework for query-efficient sparse black-box adversarial attacks. CoRR abs/2006.12834 (2020) - [i59]David Stutz, Nandhini Chandramoorthy, Matthias Hein, Bernt Schiele:
On Mitigating Random and Adversarial Bit Errors. CoRR abs/2006.13977 (2020) - [i58]Julian Bitterwolf, Alexander Meinke, Matthias Hein:
Provable Worst Case Guarantees for the Detection of Out-of-Distribution Data. CoRR abs/2007.08473 (2020) - [i57]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Fixing Asymptotic Uncertainty of Bayesian Neural Networks with Infinite ReLU Features. CoRR abs/2010.02709 (2020) - [i56]Agustinus Kristiadi, Matthias Hein, Philipp Hennig:
Learnable Uncertainty under Laplace Approximations. CoRR abs/2010.02720 (2020) - [i55]Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammarion, Mung Chiang, Prateek Mittal, Matthias Hein:
RobustBench: a standardized adversarial robustness benchmark. CoRR abs/2010.09670 (2020) - [i54]Maximilian Augustin, Matthias Hein:
Out-distribution aware Self-training in an Open World Setting. CoRR abs/2012.12372 (2020)
2010 – 2019
- 2019
- [j16]Antoine Gautier, Francesco Tudisco
, Matthias Hein:
The Perron-Frobenius Theorem for Multihomogeneous Mappings. SIAM J. Matrix Anal. Appl. 40(3): 1179-1205 (2019) - [j15]Antoine Gautier, Francesco Tudisco
, Matthias Hein:
A Unifying Perron-Frobenius Theorem for Nonnegative Tensors via Multihomogeneous Maps. SIAM J. Matrix Anal. Appl. 40(3): 1206-1231 (2019) - [c57]Francesco Croce, Maksym Andriushchenko, Matthias Hein:
Provable Robustness of ReLU networks via Maximization of Linear Regions. AISTATS 2019: 2057-2066 - [c56]Matthias Hein, Maksym Andriushchenko, Julian Bitterwolf:
Why ReLU Networks Yield High-Confidence Predictions Far Away From the Training Data and How to Mitigate the Problem. CVPR 2019: 41-50 - [c55]Matthias Hein, Maksym Andriushchenko, Julian Bitterwolf:
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem. CVPR Workshops 2019: 58-74 - [c54]David Stutz, Matthias Hein, Bernt Schiele:
Disentangling Adversarial Robustness and Generalization. CVPR 2019: 6976-6987 - [c53]Francesco Croce, Matthias Hein:
Sparse and Imperceivable Adversarial Attacks. ICCV 2019: 4723-4731 - [c52]Quynh Nguyen, Mahesh Chandra Mukkamala, Matthias Hein:
On the loss landscape of a class of deep neural networks with no bad local valleys. ICLR (Poster) 2019 - [c51]Pedro Mercado, Francesco Tudisco, Matthias Hein:
Spectral Clustering of Signed Graphs via Matrix Power Means. ICML 2019: 4526-4536 - [c50]Maksym Andriushchenko, Matthias Hein:
Provably robust boosted decision stumps and trees against adversarial attacks. NeurIPS 2019: 12997-13008 - [c49]Pedro Mercado, Francesco Tudisco, Matthias Hein:
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs. NeurIPS 2019: 14848-14857 - [i53]Francesco Croce, Jonas Rauber, Matthias Hein:
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks. CoRR abs/1903.11359 (2019) - [i52]Pedro Mercado, Francesco Tudisco, Matthias Hein:
Spectral Clustering of Signed Graphs via Matrix Power Means. CoRR abs/1905.06230 (2019) - [i51]Francesco Croce, Matthias Hein:
Provable robustness against all adversarial lp-perturbations for p≥1. CoRR abs/1905.11213 (2019) - [i50]Maksym Andriushchenko, Matthias Hein:
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks. CoRR abs/1906.03526 (2019) - [i49]Francesco Croce, Matthias Hein:
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack. CoRR abs/1907.02044 (2019) - [i48]Francesco Croce, Matthias Hein:
Sparse and Imperceivable Adversarial Attacks. CoRR abs/1909.05040 (2019) - [i47]Alexander Meinke, Matthias Hein:
Towards neural networks that provably know when they don't know. CoRR abs/1909.12180 (2019) - [i46]David Stutz, Matthias Hein, Bernt Schiele:
Confidence-Calibrated Adversarial Training: Towards Robust Models Generalizing Beyond the Attack Used During Training. CoRR abs/1910.06259 (2019) - [i45]Pedro Mercado, Francesco Tudisco, Matthias Hein:
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs. CoRR abs/1910.13951 (2019) - [i44]Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, Matthias Hein:
Square Attack: a query-efficient black-box adversarial attack via random search. CoRR abs/1912.00049 (2019) - 2018
- [j14]Maksim Lapin
, Matthias Hein, Bernt Schiele:
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and Multilabel Classification. IEEE Trans. Pattern Anal. Mach. Intell. 40(7): 1533-1554 (2018) - [j13]Francesco Tudisco
, Pedro Mercado, Matthias Hein:
Community Detection in Networks via Nonlinear Modularity Eigenvectors. SIAM J. Appl. Math. 78(5): 2393-2419 (2018) - [c48]Pedro Mercado, Antoine Gautier, Francesco Tudisco, Matthias Hein:
The Power Mean Laplacian for Multilayer Graph Clustering. AISTATS 2018: 1828-1838 - [c47]Francesco Croce, Matthias Hein:
A Randomized Gradient-Free Attack on ReLU Networks. GCPR 2018: 215-227 - [c46]Quynh Nguyen, Matthias Hein:
The loss surface and expressivity of deep convolutional neural networks. ICLR (Workshop) 2018 - [c45]Quynh Nguyen, Matthias Hein:
Optimization Landscape and Expressivity of Deep CNNs. ICML 2018: 3727-3736 - [c44]Quynh Nguyen, Mahesh Chandra Mukkamala, Matthias Hein:
Neural Networks Should Be Wide Enough to Learn Disconnected Decision Regions. ICML 2018: 3737-3746 - [i43]Antoine Gautier, Francesco Tudisco, Matthias Hein:
A unifying Perron-Frobenius theorem for nonnegative tensors via multi-homogeneous maps. CoRR abs/1801.04215 (2018) - [i42]Quynh Nguyen, Mahesh Chandra Mukkamala, Matthias Hein:
Neural Networks Should Be Wide Enough to Learn Disconnected Decision Regions. CoRR abs/1803.00094 (2018) - [i41]Pedro Mercado, Antoine Gautier, Francesco Tudisco, Matthias Hein:
The Power Mean Laplacian for Multilayer Graph Clustering. CoRR abs/1803.00491 (2018) - [i40]Quynh Nguyen, Mahesh Chandra Mukkamala, Matthias Hein:
On the loss landscape of a class of deep neural networks with no bad local valleys. CoRR abs/1809.10749 (2018) - [i39]Francesco Croce, Maksym Andriushchenko, Matthias Hein:
Provable Robustness of ReLU networks via Maximization of Linear Regions. CoRR abs/1810.07481 (2018) - [i38]Marius Mosbach, Maksym Andriushchenko, Thomas Alexander Trost, Matthias Hein, Dietrich Klakow:
Logit Pairing Methods Can Fool Gradient-Based Attacks. CoRR abs/1810.12042 (2018) - [i37]Francesco Croce, Matthias Hein:
A randomized gradient-free attack on ReLU networks. CoRR abs/1811.11493 (2018) - [i36]David Stutz, Matthias Hein, Bernt Schiele:
Disentangling Adversarial Robustness and Generalization. CoRR abs/1812.00740 (2018) - [i35]Matthias Hein, Maksym Andriushchenko, Julian Bitterwolf:
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem. CoRR abs/1812.05720 (2018) - 2017
- [j12]Quynh N. Nguyen, Francesco Tudisco
, Antoine Gautier, Matthias Hein:
An Efficient Multilinear Optimization Framework for Hypergraph Matching. IEEE Trans. Pattern Anal. Mach. Intell. 39(6): 1054-1075 (2017) - [c43]Anna Khoreva, Rodrigo Benenson, Jan Hendrik Hosang, Matthias Hein, Bernt Schiele:
Simple Does It: Weakly Supervised Instance and Semantic Segmentation. CVPR 2017: 1665-1674 - [c42]Mahesh Chandra Mukkamala, Matthias Hein:
Variants of RMSProp and Adagrad with Logarithmic Regret Bounds. ICML 2017: 2545-2553 - [c41]Quynh Nguyen, Matthias Hein:
The Loss Surface of Deep and Wide Neural Networks. ICML 2017: 2603-2612 - [c40]Matthias Hein, Maksym Andriushchenko:
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation. NIPS 2017: 2266-2276 - [i34]Pedro Mercado, Francesco Tudisco, Matthias Hein:
Clustering Signed Networks with the Geometric Mean of Laplacians. CoRR abs/1701.00757 (2017) - [i33]Quynh N. Nguyen, Matthias Hein:
The loss surface of deep and wide neural networks. CoRR abs/1704.08045 (2017) - [i32]Matthias Hein, Maksym Andriushchenko:
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation. CoRR abs/1705.08475 (2017) - [i31]Mahesh Chandra Mukkamala, Matthias Hein:
Variants of RMSProp and Adagrad with Logarithmic Regret Bounds. CoRR abs/1706.05507 (2017) - [i30]Francesco Tudisco, Pedro Mercado, Matthias Hein:
Community detection in networks via nonlinear modularity eigenvectors. CoRR abs/1708.05569 (2017) - [i29]Quynh Nguyen, Matthias Hein:
The loss surface and expressivity of deep convolutional neural networks. CoRR abs/1710.10928 (2017) - 2016
- [c39]Yongqin Xian, Zeynep Akata, Gaurav Sharma, Quynh N. Nguyen, Matthias Hein, Bernt Schiele:
Latent Embeddings for Zero-Shot Classification. CVPR 2016: 69-77 - [c38]Anna Khoreva, Rodrigo Benenson, Mohamed Omran, Matthias Hein, Bernt Schiele:
Weakly Supervised Object Boundaries. CVPR 2016: 183-192 - [c37]Maksim Lapin, Matthias Hein, Bernt Schiele:
Loss Functions for Top-k Error: Analysis and Insights. CVPR 2016: 1468-1477 - [c36]Anna Khoreva, Rodrigo Benenson, Fabio Galasso
, Matthias Hein, Bernt Schiele:
Improved Image Boundaries for Better Video Segmentation. ECCV Workshops (3) 2016: 773-788 - [c35]Antoine Gautier, Quynh N. Nguyen, Matthias Hein:
Globally Optimal Training of Generalized Polynomial Neural Networks with Nonlinear Spectral Methods. NIPS 2016: 1687-1695 - [c34]Pedro Mercado, Francesco Tudisco, Matthias Hein:
Clustering Signed Networks with the Geometric Mean of Laplacians. NIPS 2016: 4421-4429 - [i28]Francesco Tudisco, Matthias Hein:
Nodal domain theorem for the graph p-Laplacian. CoRR abs/1602.05567 (2016) - [i27]Anna Khoreva, Rodrigo Benenson, Jan Hendrik Hosang, Matthias Hein, Bernt Schiele:
Weakly Supervised Semantic Labelling and Instance Segmentation. CoRR abs/1603.07485 (2016) - [i26]Yongqin Xian, Zeynep Akata, Gaurav Sharma, Quynh N. Nguyen, Matthias Hein, Bernt Schiele:
Latent Embeddings for Zero-shot Classification. CoRR abs/1603.08895 (2016) - [i25]Anna Khoreva, Rodrigo Benenson, Fabio Galasso, Matthias Hein, Bernt Schiele:
Improved Image Boundaries for Better Video Segmentation. CoRR abs/1605.03718 (2016) - [i24]Antoine Gautier, Quynh N. Nguyen, Matthias Hein:
Globally Optimal Training of Generalized Polynomial Neural Networks with Nonlinear Spectral Methods. CoRR abs/1610.09300 (2016) - [i23]Maksim Lapin, Matthias Hein, Bernt Schiele:
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and Multilabel Classification. CoRR abs/1612.03663 (2016) - 2015
- [j11]Sahely Bhadra, Matthias Hein:
Correction of noisy labels via mutual consistency check. Neurocomputing 160: 34-52 (2015) - [c33]Anna Khoreva, Fabio Galasso
, Matthias Hein, Bernt Schiele:
Classifier based graph construction for video segmentation. CVPR 2015: 951-960 - [c32]Quynh Nguyen Ngoc, Antoine Gautier, Matthias Hein:
A flexible tensor block coordinate ascent scheme for hypergraph matching. CVPR 2015: 5270-5278 - [c31]Maksim Lapin, Matthias Hein, Bernt Schiele:
Top-k Multiclass SVM. NIPS 2015: 325-333 - [c30]Pratik Jawanpuria, Maksim Lapin, Matthias Hein, Bernt Schiele:
Efficient Output Kernel Learning for Multiple Tasks. NIPS 2015: 1189-1197 - [c29]Martin Slawski, Ping Li, Matthias Hein:
Regularization-Free Estimation in Trace Regression with Symmetric Positive Semidefinite Matrices. NIPS 2015: 2782-2790 - [i22]Martin Slawski, Ping Li, Matthias Hein:
Regularization-free estimation in trace regression with symmetric positive semidefinite matrices. CoRR abs/1504.06305 (2015) - [i21]Quynh Nguyen Ngoc, Antoine Gautier, Matthias Hein:
A Flexible Tensor Block Coordinate Ascent Scheme for Hypergraph Matching. CoRR abs/1504.07907 (2015) - [i20]Syama Sundar Rangapuram, Pramod Kaushik Mudrakarta, Matthias Hein:
Tight Continuous Relaxation of the Balanced k-Cut Problem. CoRR abs/1505.06478 (2015) - [i19]Syama Sundar Rangapuram, Matthias Hein:
Constrained 1-Spectral Clustering. CoRR abs/1505.06485 (2015) - [i18]Syama Sundar Rangapuram, Thomas Bühler, Matthias Hein:
Towards Realistic Team Formation in Social Networks based on Densest Subgraphs. CoRR abs/1505.06661 (2015) - [i17]Anastasia Podosinnikova, Simon Setzer, Matthias Hein:
Robust PCA: Optimization of the Robust Reconstruction Error over the Stiefel Manifold. CoRR abs/1506.00323 (2015) - [i16]Quynh N. Nguyen, Francesco Tudisco, Antoine Gautier, Matthias Hein:
An Efficient Multilinear Optimization Framework for Hypergraph Matching. CoRR abs/1511.02667 (2015) - [i15]Pratik Jawanpuria, Maksim Lapin, Matthias Hein, Bernt Schiele:
Efficient Output Kernel Learning for Multiple Tasks. CoRR abs/1511.05706 (2015) - [i14]Maksim Lapin, Matthias Hein, Bernt Schiele:
Top-k Multiclass SVM. CoRR abs/1511.06683 (2015) - [i13]Anna Khoreva, Rodrigo Benenson, Mohamed Omran, Matthias Hein, Bernt Schiele:
Weakly Supervised Object Boundaries. CoRR abs/1511.07803 (2015) - [i12]Maksim Lapin, Matthias Hein, Bernt Schiele:
Loss Functions for Top-k Error: Analysis and Insights. CoRR abs/1512.00486 (2015) - [i11]Matthias Hein, Gábor Lugosi, Lorenzo Rosasco:
Mathematical and Computational Foundations of Learning Theory (Dagstuhl Seminar 15361). Dagstuhl Reports 5(8): 54-0 (2015) - 2014
- [j10]Ulrike von Luxburg, Agnes Radl, Matthias Hein:
Hitting and commute times in large random neighborhood graphs. J. Mach. Learn. Res. 15(1): 1751-1798 (2014) - [j9]Maksim Lapin, Matthias Hein, Bernt Schiele:
Learning using privileged information: SV M+ and weighted SVM. Neural Networks 53: 95-108 (2014) - [c28]Maksim Lapin, Bernt Schiele, Matthias Hein:
Scalable Multitask Representation Learning for Scene Classification. CVPR 2014: 1434-1441 - [c27]Anastasia Podosinnikova, Simon Setzer, Matthias Hein:
Robust PCA: Optimization of the Robust Reconstruction Error Over the Stiefel Manifold. GCPR 2014: 121-131 - [c26]Anna Khoreva, Fabio Galasso
, Matthias Hein, Bernt Schiele:
Learning Must-Link Constraints for Video Segmentation Based on Spectral Clustering. GCPR 2014: 701-712 - [c25]Syama Sundar Rangapuram, Pramod Kaushik Mudrakarta, Matthias Hein:
Tight Continuous Relaxation of the Balanced k-Cut Problem. NIPS 2014: 3131-3139 - [i10]Martin Slawski, Matthias Hein, Pavlo Lutsik:
Matrix factorization with Binary Components. CoRR abs/1401.6024 (2014) - 2013
- [c24]Thomas Bühler, Syama Sundar Rangapuram, Simon Setzer, Matthias Hein:
Constrained fractional set programs and their application in local clustering and community detection. ICML (1) 2013: 624-632 - [c23]Matthias Hein, Simon Setzer, Leonardo Jost, Syama Sundar Rangapuram:
The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited. NIPS 2013: 2427-2435 - [c22]Martin Slawski, Matthias Hein, Pavlo Lutsik:
Matrix factorization with binary components. NIPS 2013: 3210-3218 - [c21]Syama Sundar Rangapuram, Thomas Bühler, Matthias Hein:
Towards realistic team formation in social networks based on densest subgraphs. WWW 2013: 1077-1088 - [e1]Joachim Weickert, Matthias Hein, Bernt Schiele:
Pattern Recognition - 35th German Conference, GCPR 2013, Saarbrücken, Germany, September 3-6, 2013. Proceedings. Lecture Notes in Computer Science 8142, Springer 2013, ISBN 978-3-642-40601-0 [contents] - [i9]Maksim Lapin, Matthias Hein, Bernt Schiele:
Learning Using Privileged Information: SVM+ and Weighted SVM. CoRR abs/1306.3161 (2013) - [i8]Thomas Bühler, Syama Sundar Rangapuram, Simon Setzer, Matthias Hein:
Constrained fractional set programs and their application in local clustering and community detection. CoRR abs/1306.3409 (2013) - [i7]Matthias Hein, Simon Setzer, Leonardo Jost, Syama Sundar Rangapuram:
The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited. CoRR abs/1312.5179 (2013) - [i6]Leonardo Jost, Simon Setzer, Matthias Hein:
Nonlinear Eigenproblems in Data Analysis - Balanced Graph Cuts and the RatioDCA-Prox. CoRR abs/1312.5192 (2013) - 2012
- [j8]Martin Slawski, Rene Hussong, Andreas Tholey
, Thomas Jakoby, Barbara Gregorius, Andreas Hildebrandt
, Matthias Hein:
Isotope pattern deconvolution for peptide mass spectrometry by non-negative least squares/least absolute deviation template matching. BMC Bioinform. 13: 291 (2012) - [c20]Syama Sundar Rangapuram, Matthias Hein:
Constrained 1-Spectral Clustering. AISTATS 2012: 1143-1151 - 2011
- [c19]Martin Slawski, Matthias Hein:
Sparse recovery by thresholded non-negative least squares. NIPS 2011: 1926-1934 - [c18]Matthias Hein, Simon Setzer:
Beyond Spectral Clustering - Tight Relaxations of Balanced Graph Cuts. NIPS 2011: 2366-2374 - [i5]Markus Maier, Ulrike von Luxburg, Matthias Hein:
How the result of graph clustering methods depends on the construction of the graph. CoRR abs/1102.2075 (2011) - [i4]Matthias Hein, Gábor Lugosi, Lorenzo Rosasco, Steve Smale:
Mathematical and Computational Foundations of Learning Theory (Dagstuhl Seminar 11291). Dagstuhl Reports 1(7): 53-69 (2011) - 2010
- [j7]Florian Steinke
, Matthias Hein, Bernhard Schölkopf:
Nonparametric Regression between General Riemannian Manifolds. SIAM J. Imaging Sci. 3(3): 527-563 (2010) - [c17]Matthias Hein, Thomas Bühler:
An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA. NIPS 2010: 847-855 - [c16]Ulrike von Luxburg, Agnes Radl, Matthias Hein:
Getting lost in space: Large sample analysis of the resistance distance. NIPS 2010: 2622-2630 - [i3]Ulrike von Luxburg, Agnes Radl, Matthias Hein:
Hitting times, commute distances and the spectral gap for large random geometric graphs. CoRR abs/1003.1266 (2010) - [i2]Matthias Hein, Thomas Bühler:
An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA. CoRR abs/1012.0774 (2010)
2000 – 2009
- 2009
- [j6]Andreas Keller
, Nicole Ludwig, Sabrina Heisel, Petra Leidinger, Claudia Andres, Wolf-Ingo Steudel, Hanno Huwer, Bernhard Burgeth, Matthias Hein, Joachim Weickert, Eckart Meese, Hans-Peter Lenhof:
Large-scale antibody profiling of human blood sera: The future of molecular diagnosis. Inform. Spektrum 32(4): 332-338 (2009) - [j5]Markus Maier, Matthias Hein, Ulrike von Luxburg:
Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters. Theor. Comput. Sci. 410(19): 1749-1764 (2009) - [c15]Thomas Bühler, Matthias Hein:
Spectral clustering based on the graph p-Laplacian. ICML 2009: 81-88 - [c14]Matthias Hein:
Robust Nonparametric Regression with Metric-Space Valued Output. NIPS 2009: 718-726 - [c13]Kwang In Kim, Florian Steinke, Matthias Hein:
Semi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction. NIPS 2009: 979-987 - 2008
- [j4]