default search action
Brijnesh J. Jain
Person information
- affiliation: TU Berlin, Distributed Artificial Intelligence Laboratory, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j26]Vincent Froese, Brijnesh J. Jain, Maciej Rymar, Mathias Weller:
Fast Exact Dynamic Time Warping on Run-Length Encoded Time Series. Algorithmica 85(2): 492-508 (2023) - [j25]Jing Yuan, Christian Geißler, Weijia Shao, Andreas Lommatzsch, Brijnesh J. Jain:
When algorithm selection meets Bi-linear Learning to Rank: accuracy and inference time trade off with candidates expansion. Int. J. Data Sci. Anal. 16(2): 173-189 (2023) - [j24]Brijnesh J. Jain, Vincent Froese, David Schultz:
An average-compress algorithm for the sample mean problem under dynamic time warping. J. Glob. Optim. 86(4): 885-903 (2023) - 2021
- [j23]Brijnesh J. Jain:
Warped softmax regression for time series classification. Knowl. Inf. Syst. 63(3): 589-619 (2021) - 2020
- [j22]Brijnesh J. Jain, David Schultz:
Sufficient conditions for the existence of a sample mean of time series under dynamic time warping. Ann. Math. Artif. Intell. 88(4): 313-346 (2020) - [j21]Vincent Froese, Brijnesh J. Jain, Rolf Niedermeier, Malte Renken:
Comparing temporal graphs using dynamic time warping. Soc. Netw. Anal. Min. 10(1): 50 (2020)
2010 – 2019
- 2019
- [j20]Markus Brill, Till Fluschnik, Vincent Froese, Brijnesh J. Jain, Rolf Niedermeier, David Schultz:
Exact mean computation in dynamic time warping spaces. Data Min. Knowl. Discov. 33(1): 252-291 (2019) - [j19]Brijnesh J. Jain:
Making the dynamic time warping distance warping-invariant. Pattern Recognit. 94: 35-52 (2019) - [j18]Brijnesh J. Jain:
Revisiting inaccuracies of time series averaging under dynamic time warping. Pattern Recognit. Lett. 125: 418-424 (2019) - [c44]Vincent Froese, Brijnesh J. Jain, Rolf Niedermeier, Malte Renken:
Comparing Temporal Graphs Using Dynamic Time Warping. COMPLEX NETWORKS (2) 2019: 469-480 - [i28]Brijnesh J. Jain:
Making the Dynamic Time Warping Distance Warping-Invariant. CoRR abs/1903.01454 (2019) - [i27]Vincent Froese, Brijnesh J. Jain, Maciej Rymar, Mathias Weller:
Fast Exact Dynamic Time Warping on Run-Length Encoded Time Series. CoRR abs/1903.03003 (2019) - [i26]Brijnesh J. Jain, Vincent Froese, David Schultz:
An Average-Compress Algorithm for the Sample Mean Problem under Dynamic Time Warping. CoRR abs/1909.13541 (2019) - 2018
- [j17]David Schultz, Brijnesh J. Jain:
Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces. Pattern Recognit. 74: 340-358 (2018) - [j16]Brijnesh J. Jain, David Schultz:
Asymmetric learning vector quantization for efficient nearest neighbor classification in dynamic time warping spaces. Pattern Recognit. 76: 349-366 (2018) - [j15]Brijnesh J. Jain:
The Mean Partition Theorem in consensus clustering. Pattern Recognit. 79: 427-439 (2018) - [c43]Brijnesh J. Jain:
Condorcet's Jury Theorem for Consensus Clustering. KI 2018: 155-168 - [c42]Michael Meder, Till Plumbaum, Aleksander Raczkowski, Brijnesh J. Jain, Sahin Albayrak:
Gamification in E-Commerce: Tangible vs. Intangible Rewards. MindTrek 2018: 11-19 - [c41]Markus Brill, Till Fluschnik, Vincent Froese, Brijnesh J. Jain, Rolf Niedermeier, David Schultz:
Exact Mean Computation in Dynamic Time Warping Spaces. SDM 2018: 540-548 - [i25]Brijnesh J. Jain:
Semi-Metrification of the Dynamic Time Warping Distance. CoRR abs/1808.09964 (2018) - [i24]Brijnesh J. Jain:
Revisiting Inaccuracies of Time Series Averaging under Dynamic Time Warping. CoRR abs/1809.03371 (2018) - [i23]Vincent Froese, Brijnesh J. Jain, Rolf Niedermeier, Malte Renken:
Comparing Temporal Graphs Using Dynamic Time Warping. CoRR abs/1810.06240 (2018) - 2017
- [j14]Brijnesh J. Jain:
Consistency of mean partitions in consensus clustering. Pattern Recognit. 71: 26-35 (2017) - [i22]David Schultz, Brijnesh J. Jain:
Nonsmooth Analysis and Subgradient Methods for Averaging in Dynamic Time Warping Spaces. CoRR abs/1701.06393 (2017) - [i21]Brijnesh J. Jain, David Schultz:
Asymmetric Learning Vector Quantization for Efficient Nearest Neighbor Classification in Dynamic Time Warping Spaces. CoRR abs/1703.08403 (2017) - [i20]Brijnesh J. Jain, David Schultz:
Optimal Warping Paths are unique for almost every pair of Time Series. CoRR abs/1705.05681 (2017) - [i19]Markus Brill, Till Fluschnik, Vincent Froese, Brijnesh J. Jain, Rolf Niedermeier, David Schultz:
Exact Mean Computation in Dynamic Time Warping Spaces. CoRR abs/1710.08937 (2017) - [i18]Brijnesh J. Jain:
Warped-Linear Models for Time Series Classification. CoRR abs/1711.09156 (2017) - 2016
- [j13]Brijnesh J. Jain:
On the geometry of graph spaces. Discret. Appl. Math. 214: 126-144 (2016) - [j12]Brijnesh J. Jain:
Statistical graph space analysis. Pattern Recognit. 60: 802-812 (2016) - [i17]Brijnesh J. Jain:
Homogeneity of Cluster Ensembles. CoRR abs/1602.02543 (2016) - [i16]Brijnesh J. Jain:
The Mean Partition Theorem of Consensus Clustering. CoRR abs/1604.06626 (2016) - [i15]Brijnesh J. Jain:
Condorcet's Jury Theorem for Consensus Clustering. CoRR abs/1604.07711 (2016) - [i14]Brijnesh J. Jain, David Schultz:
A Reduction Theorem for the Sample Mean in Dynamic Time Warping Spaces. CoRR abs/1610.04460 (2016) - 2015
- [j11]Brijnesh J. Jain:
Generalized gradient learning on time series. Mach. Learn. 100(2-3): 587-608 (2015) - [c40]Brijnesh J. Jain, Stephan Spiegel:
Time Series Classification in Dissimilarity Spaces. AALTD@PKDD/ECML 2015 - [c39]Brijnesh J. Jain, Stephan Spiegel:
Dimension Reduction in Dissimilarity Spaces for Time Series Classification. AALTD@PKDD/ECML (Revised Selected Papers) 2015: 31-46 - [i13]Brijnesh J. Jain:
Generalized Gradient Learning on Time Series under Elastic Transformations. CoRR abs/1502.04843 (2015) - [i12]Brijnesh J. Jain:
Geometry of Graph Edit Distance Spaces. CoRR abs/1505.08071 (2015) - [i11]Brijnesh J. Jain:
Properties of the Sample Mean in Graph Spaces and the Majorize-Minimize-Mean Algorithm. CoRR abs/1511.00871 (2015) - [i10]Brijnesh J. Jain:
Asymptotic Behavior of Mean Partitions in Consensus Clustering. CoRR abs/1512.06061 (2015) - 2014
- [c38]Brijnesh J. Jain:
Margin Perceptrons for Graphs. ICPR 2014: 3851-3856 - [c37]Cagdas Esiyok, Benjamin Kille, Brijnesh Johannes Jain, Frank Hopfgartner, Sahin Albayrak:
Users' reading habits in online news portals. IIiX 2014: 263-266 - [c36]Stephan Spiegel, Brijnesh Johannes Jain, Sahin Albayrak:
Fast time series classification under lucky time warping distance. SAC 2014: 71-78 - [c35]Brijnesh J. Jain:
Flip-Flop Sublinear Models for Graphs. S+SSPR 2014: 93-102 - [i9]Brijnesh J. Jain:
Sublinear Models for Graphs. CoRR abs/1403.2295 (2014) - [i8]Brijnesh J. Jain:
Flip-Flop Sublinear Models for Graphs: Proof of Theorem 1. CoRR abs/1405.7897 (2014) - [i7]Michael Meder, Brijnesh Johannes Jain:
The Gamification Design Problem. CoRR abs/1407.0843 (2014) - 2013
- [c34]Brijnesh J. Jain:
Mixtures of Radial Densities for Clustering Graphs. CAIP (1) 2013: 110-119 - [c33]Alan Said, Brijnesh J. Jain, Sahin Albayrak:
A 3D approach to recommender system evaluation. CSCW Companion 2013: 263-266 - [c32]Alan Said, Ben Fields, Brijnesh J. Jain, Sahin Albayrak:
User-centric evaluation of a K-furthest neighbor collaborative filtering recommender algorithm. CSCW 2013: 1399-1408 - 2012
- [j10]Brijnesh J. Jain:
Maximum likelihood method for parameter estimation of bell-shaped functions on graphs. Pattern Recognit. Lett. 33(15): 2000-2010 (2012) - [c31]Alan Said, Brijnesh J. Jain, Andreas Lommatzsch, Sahin Albayrak:
Correlating perception-oriented aspects in user-centric recommender system evaluation. IIiX 2012: 294-297 - [c30]Alan Said, Ernesto William De Luca, Benjamin Kille, Brijnesh J. Jain, Immo Micus, Sahin Albayrak:
KMulE: a framework for user-based comparison of recommender algorithms. IUI 2012: 323-324 - [c29]Alan Said, Brijnesh J. Jain, Sahin Albayrak:
Analyzing weighting schemes in collaborative filtering: cold start, post cold start and power users. SAC 2012: 2035-2040 - [c28]Alan Said, Brijnesh J. Jain, Sascha Narr, Till Plumbaum, Sahin Albayrak, Christian Scheel:
Estimating the magic barrier of recommender systems: a user study. SIGIR 2012: 1061-1062 - [c27]Alan Said, Brijnesh J. Jain, Sascha Narr, Till Plumbaum:
Users and Noise: The Magic Barrier of Recommender Systems. UMAP 2012: 237-248 - [i6]Brijnesh J. Jain, Klaus Obermayer:
Learning in Riemannian Orbifolds. CoRR abs/1204.4294 (2012) - 2011
- [j9]Brijnesh J. Jain, Klaus Obermayer:
Graph quantization. Comput. Vis. Image Underst. 115(7): 946-961 (2011) - [c26]Stephan Spiegel, Brijnesh Johannes Jain, Ernesto William De Luca, Sahin Albayrak:
Pattern recognition in multivariate time series: dissertation proposal. PIKM@CIKM 2011: 27-34 - [c25]Brijnesh J. Jain, Klaus Obermayer:
Maximum Likelihood for Gaussians on Graphs. GbRPR 2011: 62-71 - [c24]Brijnesh J. Jain, Klaus Obermayer:
Generalized Learning Graph Quantization. GbRPR 2011: 122-131 - [i5]Brijnesh J. Jain, Klaus Obermayer:
Extending Bron Kerbosch for Solving the Maximum Weight Clique Problem. CoRR abs/1101.1266 (2011) - 2010
- [j8]Johannes Mohr, Brijnesh J. Jain, Andreas Sutter, Antonius ter Laak, Thomas Steger-Hartmann, Nikolaus Heinrich, Klaus Obermayer:
A Maximum Common Subgraph Kernel Method for Predicting the Chromosome Aberration Test. J. Chem. Inf. Model. 50(10): 1821-1838 (2010) - [c23]Brijnesh J. Jain, Klaus Obermayer:
Consistent Estimator of Median and Mean Graph. ICPR 2010: 1032-1035 - [c22]Brijnesh J. Jain, Klaus Obermayer:
Elkan's k-Means Algorithm for Graphs. MICAI (2) 2010: 22-32 - [c21]Brijnesh J. Jain, S. Deepak Srinivasan, Alexander Tissen, Klaus Obermayer:
Learning Graph Quantization. SSPR/SPR 2010: 109-118 - [c20]Brijnesh J. Jain, Klaus Obermayer:
Large Sample Statistics in the Domain of Graphs. SSPR/SPR 2010: 690-697 - [i4]Brijnesh J. Jain, Klaus Obermayer:
Graph Quantization. CoRR abs/1001.0921 (2010) - [i3]Brijnesh J. Jain, Klaus Obermayer:
Accelerating Competitive Learning Graph Quantization. CoRR abs/1001.0927 (2010)
2000 – 2009
- 2009
- [j7]Brijnesh J. Jain, Klaus Obermayer:
Structure Spaces. J. Mach. Learn. Res. 10: 2667-2714 (2009) - [c19]Brijnesh J. Jain, Klaus Obermayer:
Algorithms for the Sample Mean of Graphs. CAIP 2009: 351-359 - [c18]Brijnesh J. Jain, Klaus Obermayer:
Bimal: Bipartite matching alignment for the contact map overlap problem. IJCNN 2009: 1394-1400 - [c17]Brijnesh J. Jain, Brijnesh Stehr, Michael Lappe, Klaus Obermayer:
Multiple alignment of contact maps. IJCNN 2009: 1401-1406 - [i2]Brijnesh J. Jain, Klaus Obermayer:
A Necessary and Sufficient Condition for Graph Matching Being Equivalent to the Maximum Weight Clique Problem. CoRR abs/0912.4584 (2009) - [i1]Brijnesh J. Jain, Klaus Obermayer:
Elkan's k-Means for Graphs. CoRR abs/0912.4598 (2009) - 2008
- [j6]Johannes Mohr, Brijnesh J. Jain, Klaus Obermayer:
Molecule Kernels: A Descriptor- and Alignment-Free Quantitative Structure-Activity Relationship Approach. J. Chem. Inf. Model. 48(9): 1868-1881 (2008) - [c16]Brijnesh J. Jain, Klaus Obermayer:
On the sample mean of graphs. IJCNN 2008: 993-1000 - 2007
- [c15]Brijnesh J. Jain, Michael Lappe:
Joining Softassign and Dynamic Programming for the Contact Map Overlap Problem. BIRD 2007: 410-423 - 2005
- [b1]Brijnesh Johannes Jain:
Structural neural learning machines. Berlin Institute of Technology, 2005 - [j5]Brijnesh J. Jain, Fritz Wysotzki:
Solving inexact graph isomorphism problems using neural networks. Neurocomputing 63: 45-67 (2005) - [j4]Brijnesh J. Jain, Peter Geibel, Fritz Wysotzki:
SVM learning with the Schur-Hadamard inner product for graphs. Neurocomputing 64: 93-105 (2005) - [p1]Brijnesh Johannes Jain:
Structural Neuronal Learning Machines. Ausgezeichnete Informatikdissertationen 2005: 39-48 - 2004
- [j3]Brijnesh J. Jain, Fritz Wysotzki:
Central Clustering of Attributed Graphs. Mach. Learn. 56(1-3): 169-207 (2004) - [j2]Brijnesh J. Jain, Fritz Wysotzki:
Discrimination networks for maximum selection. Neural Networks 17(1): 143-154 (2004) - [c14]Barbara Hammer, Brijnesh J. Jain:
Neural methods for non-standard data. ESANN 2004: 281-292 - [c13]Peter Geibel, Brijnesh J. Jain, Fritz Wysotzki:
SVM learning with the SH inner product. ESANN 2004: 299-304 - [c12]Brijnesh J. Jain, Fritz Wysotzki:
The maximum weighted clique problem and Hopfield networks. ESANN 2004: 331-336 - [c11]Brijnesh J. Jain, Peter Geibel, Fritz Wysotzki:
Combining Recurrent Neural Networks and Support Vector Machines for Structural Pattern Recognition. KI 2004: 241-255 - [c10]Brijnesh J. Jain, Fritz Wysotzki:
Learning with Neural Networks in the Domain of Graphs. LWA 2004: 163-170 - [c9]Brijnesh J. Jain, Fritz Wysotzki:
Structural Perceptrons for Attributed Graphs. SSPR/SPR 2004: 85-94 - 2003
- [j1]Brijnesh J. Jain, Fritz Wysotzki:
Automorphism Partitioning with Neural Networks. Neural Process. Lett. 17(2): 205-215 (2003) - [c8]Brijnesh J. Jain, Fritz Wysotzki:
A Neural Graph Isomorphism Algorithm based on local Invariants. ESANN 2003: 79-84 - [c7]Brijnesh J. Jain, Fritz Wysotzki:
An Associative Memory for the Automorphism Group of Structures. ESANN 2003: 107-112 - [c6]Brijnesh J. Jain, Fritz Wysotzki:
A Competitive Winner-Takes-All Architecture for Classification and Pattern Recognition of Structures. GbRPR 2003: 259-270 - [c5]Brijnesh J. Jain, Fritz Wysotzki:
A Novel Neural Network Approach to Solve Exact and Inexact Graph Isomorphism Problems. ICANN 2003: 299-306 - [c4]Brijnesh J. Jain, Fritz Wysotzki:
A k-Winner-Takes-All Classifier for Structured Data. KI 2003: 342-354 - 2002
- [c3]Brijnesh J. Jain, Fritz Wysotzki:
Fast Winner-Takes-All Networks for the Maximum Clique Problem. KI 2002: 163-173 - 2001
- [c2]Brijnesh J. Jain, Fritz Wysotzki:
On the short-term-memory of WTA nets. ESANN 2001: 289-294 - [c1]Brijnesh J. Jain, Fritz Wysotzki:
Efficient Pattern Discrimination with Inhibitory WTA Nets. ICANN 2001: 827-834
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-04-25 05:59 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint