Stop the war!
Остановите войну!
for scientists:
default search action
Nathalie Japkowicz
Person information
- affiliation: American University, Washington, DC, USA
- affiliation (former): University of Ottawa, Canada
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j49]Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, Nathalie Japkowicz:
Lifelong Continual Learning for Anomaly Detection: New Challenges, Perspectives, and Insights. IEEE Access 12: 41364-41380 (2024) - [j48]Zhen Liu, Ruoyu Wang, Nathalie Japkowicz, Heitor Murilo Gomes, Bitao Peng, Wenbin Zhang:
SeGDroid: An Android malware detection method based on sensitive function call graph learning. Expert Syst. Appl. 235: 121125 (2024) - [j47]Lucas P. Damasceno, Egzona Rexhepi, Allison Shafer, Ian Whitehouse, Nathalie Japkowicz, Charles C. Cavalcante, Roberto Corizzo, Zois Boukouvalas:
Exploiting sparsity and statistical dependence in multivariate data fusion: an application to misinformation detection for high-impact events. Mach. Learn. 113(4): 2183-2205 (2024) - [j46]Kushankur Ghosh, Colin Bellinger, Roberto Corizzo, Paula Branco, Bartosz Krawczyk, Nathalie Japkowicz:
The class imbalance problem in deep learning. Mach. Learn. 113(7): 4845-4901 (2024) - [j45]Lucas P. Damasceno, Egzona Rexhepi, Allison Shafer, Ian Whitehouse, Nathalie Japkowicz, Charles C. Cavalcante, Roberto Corizzo, Zois Boukouvalas:
Correction to: Exploiting sparsity and statistical dependence in multivariate data fusion: an application to misinformation detection for high-impact events. Mach. Learn. 113(9): 7127-7128 (2024) - [i17]Dhanush Kikkisetti, Raza Ul-Mustafa, Wendy Melillo, Roberto Corizzo, Zois Boukouvalas, Jeff Gill, Nathalie Japkowicz:
Using LLMs to discover emerging coded antisemitic hate-speech in extremist social media. CoRR abs/2401.10841 (2024) - [i16]Raza Ul-Mustafa, Nathalie Japkowicz:
Monitoring the evolution of antisemitic discourse on extremist social media using BERT. CoRR abs/2403.05548 (2024) - 2023
- [j44]Evan Crothers, Nathalie Japkowicz, Herna L. Viktor:
Machine-Generated Text: A Comprehensive Survey of Threat Models and Detection Methods. IEEE Access 11: 70977-71002 (2023) - [j43]Miriam Seoane Santos, Pedro Henriques Abreu, Nathalie Japkowicz, Alberto Fernández, João A. M. Santos:
A unifying view of class overlap and imbalance: Key concepts, multi-view panorama, and open avenues for research. Inf. Fusion 89: 228-253 (2023) - [j42]Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, Nathalie Japkowicz:
VLAD: Task-agnostic VAE-based lifelong anomaly detection. Neural Networks 165: 248-273 (2023) - [j41]Roberto Corizzo, Gianvito Pio, Emanuele Pio Barracchia, Antonio Pellicani, Nathalie Japkowicz, Michelangelo Ceci:
HURI: Hybrid user risk identification in social networks. World Wide Web (WWW) 26(5): 3409-3439 (2023) - [c119]Nicolas Antonio Cloutier, Nathalie Japkowicz:
Fine-tuned generative LLM oversampling can improve performance over traditional techniques on multiclass imbalanced text classification. IEEE Big Data 2023: 5181-5186 - [c118]Colin Bellinger, Roberto Corizzo, Nathalie Japkowicz:
Performance Estimation bias in Class Imbalance with Minority Subconcepts. LIDTA 2023: 31-44 - [e7]Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michal Wozniak, Shuo Wang:
Fifth International Workshop on Learning with Imbalanced Domains: Theory and Applications, 18 September 2023, LIDTA@ECML-PKDD, Turin, Italy. Proceedings of Machine Learning Research 241, PMLR 2023 [contents] - [i15]Evan Crothers, Herna L. Viktor, Nathalie Japkowicz:
In BLOOM: Creativity and Affinity in Artificial Lyrics and Art. CoRR abs/2301.05402 (2023) - [i14]Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, Nathalie Japkowicz:
Lifelong Learning for Anomaly Detection: New Challenges, Perspectives, and Insights. CoRR abs/2303.07557 (2023) - [i13]Kamil Faber, Dominik Zurek, Marcin Pietron, Nathalie Japkowicz, Antonio Vergari, Roberto Corizzo:
From MNIST to ImageNet and Back: Benchmarking Continual Curriculum Learning. CoRR abs/2303.11076 (2023) - [i12]Yueyang Liu, Zois Boukouvalas, Nathalie Japkowicz:
A Semi-Supervised Framework for Misinformation Detection. CoRR abs/2304.11318 (2023) - [i11]Evan Crothers, Herna L. Viktor, Nathalie Japkowicz:
Faithful to Whom? Questioning Interpretability Measures in NLP. CoRR abs/2308.06795 (2023) - [i10]Shoffan Saifullah, Rafal Drezewski, Anton Yudhana, Andri Pranolo, Wilis Kaswijanti, Andiko Putro Suryotomo, Seno Aji Putra, Alin Khaliduzzaman, Anton Satria Prabuwono, Nathalie Japkowicz:
Nondestructive chicken egg fertility detection using CNN-transfer learning algorithms. CoRR abs/2309.16257 (2023) - 2022
- [j40]Miriam Seoane Santos, Pedro Henriques Abreu, Nathalie Japkowicz, Alberto Fernández, Carlos Soares, Szymon Wilk, João A. M. Santos:
On the joint-effect of class imbalance and overlap: a critical review. Artif. Intell. Rev. 55(8): 6207-6275 (2022) - [j39]William Klement, Sébastien Gilbert, Virginia F. Resende, Donna E. Maziak, Andrew J. E. Seely, Farid M. Shamji, Sudhir R. Sundaresan, Patrick J. Villeneuve, Nathalie Japkowicz:
The validation of chest tube management after lung resection surgery using a random forest classifier. Int. J. Data Sci. Anal. 13(3): 251-263 (2022) - [j38]Roberto Corizzo, Michael Baron, Nathalie Japkowicz:
CPDGA: Change point driven growing auto-encoder for lifelong anomaly detection. Knowl. Based Syst. 247: 108756 (2022) - [c117]Indranil Sur, Zachary Daniels, Abrar Rahman, Kamil Faber, Gianmarco J. Gallardo, Tyler L. Hayes, Cameron E. Taylor, Mustafa Burak Gurbuz, James Seale Smith, Sahana Pramod Joshi, Nathalie Japkowicz, Michael Baron, Zsolt Kira, Christopher Kanan, Roberto Corizzo, Ajay Divakaran, Michael R. Piacentino, Jesse Hostetler, Aswin Raghavan:
System Design for an Integrated Lifelong Reinforcement Learning Agent for Real-Time Strategy Games. AIMLSystems 2022: 12:1-12:9 - [c116]Roberto Corizzo, Rodrigo Yepez-Lopez, Sébastien Gilbert, Nathalie Japkowicz:
LSTM-based Pulmonary Air Leak Forecasting for Chest Tube Management. IEEE Big Data 2022: 5217-5222 - [c115]Zachary Alan Daniels, Aswin Raghavan, Jesse Hostetler, Abrar Rahman, Indranil Sur, Michael R. Piacentino, Ajay Divakaran, Roberto Corizzo, Kamil Faber, Nathalie Japkowicz, Michael Baron, James Seale Smith, Sahana Pramod Joshi, Zsolt Kira, Cameron Ethan Taylor, Mustafa Burak Gurbuz, Constantine Dovrolis, Tyler L. Hayes, Christopher Kanan, Jhair Gallardo:
Model-Free Generative Replay for Lifelong Reinforcement Learning: Application to Starcraft-2. CoLLAs 2022: 1120-1145 - [c114]Lucas P. Damasceno, Allison Shafer, Nathalie Japkowicz, Charles C. Cavalcante, Zois Boukouvalas:
Efficient Multivariate Data Fusion for Misinformation Detection During High Impact Events. DS 2022: 253-268 - [c113]Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, Nathalie Japkowicz:
Active Lifelong Anomaly Detection with Experience Replay. DSAA 2022: 1-10 - [c112]Evan Crothers, Nathalie Japkowicz, Herna L. Viktor, Paula Branco:
Adversarial Robustness of Neural-Statistical Features in Detection of Generative Transformers. IJCNN 2022: 1-8 - [c111]Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, Michael Baron, Nathalie Japkowicz:
LIFEWATCH: Lifelong Wasserstein Change Point Detection. IJCNN 2022: 1-8 - [c110]Myles Russell, Dylan Russell, Roberto Corizzo, Nathalie Japkowicz:
Machine Learning for Surgical Risk Assessment Decision Systems. IJCNN 2022: 1-8 - [c109]Roberto Corizzo, Junfeng Ge, Colin Bellinger, Xiaoqiang Zhu, Paula Branco, Kuang-chih Lee, Nathalie Japkowicz, Ruiming Tang, Tao Zhuang, Han Zhu, Biye Jiang, Jiaxin Mao, Weinan Zhang:
4th Workshop on Deep Learning Practice and Theory for High-Dimensional Sparse and Imbalanced Data with KDD 2022. KDD 2022: 4860-4861 - [c108]Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michal Wozniak, Shuo Wang:
4th Workshop on Learning with Imbalanced Domains: Preface. LIDTA 2022: 1-7 - [e6]Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michal Wozniak, Shuo Wang:
Fourth International Workshop on Learning with Imbalanced Domains: Theory and Applications, LIDTA 2022, Grenoble, France, September 23, 2022. Proceedings of Machine Learning Research 183, PMLR 2022 [contents] - [i9]Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, Michael Baron, Nathalie Japkowicz:
WATCH: Wasserstein Change Point Detection for High-Dimensional Time Series Data. CoRR abs/2201.07125 (2022) - [i8]Evan Crothers, Nathalie Japkowicz, Herna L. Viktor, Paula Branco:
Adversarial Robustness of Neural-Statistical Features in Detection of Generative Transformers. CoRR abs/2203.07983 (2022) - [i7]Evan Crothers, Nathalie Japkowicz, Herna L. Viktor:
Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods. CoRR abs/2210.07321 (2022) - [i6]Indranil Sur, Zachary Daniels, Abrar Rahman, Kamil Faber, Gianmarco J. Gallardo, Tyler L. Hayes, Cameron E. Taylor, Mustafa Burak Gurbuz, James Seale Smith, Sahana Pramod Joshi, Nathalie Japkowicz, Michael Baron, Zsolt Kira, Christopher Kanan, Roberto Corizzo, Ajay Divakaran, Michael R. Piacentino, Jesse Hostetler, Aswin Raghavan:
System Design for an Integrated Lifelong Reinforcement Learning Agent for Real-Time Strategy Games. CoRR abs/2212.04603 (2022) - 2021
- [j37]Zhen Liu, Ruoyu Wang, Nathalie Japkowicz, Deyu Tang, Wenbin Zhang, Jie Zhao:
Research on unsupervised feature learning for Android malware detection based on Restricted Boltzmann Machines. Future Gener. Comput. Syst. 120: 91-108 (2021) - [c107]Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, Michael Baron, Nathalie Japkowicz:
WATCH: Wasserstein Change Point Detection for High-Dimensional Time Series Data. IEEE BigData 2021: 4450-4459 - [c106]Roberto Corizzo, Yohan Dauphin, Colin Bellinger, Eftim Zdravevski, Nathalie Japkowicz:
Explainable image analysis for decision support in medical healthcare. IEEE BigData 2021: 4667-4674 - [c105]Kushankur Ghosh, Colin Bellinger, Roberto Corizzo, Bartosz Krawczyk, Nathalie Japkowicz:
On the combined effect of class imbalance and concept complexity in deep learning. IEEE BigData 2021: 4859-4868 - [c104]Evan Crothers, Herna L. Viktor, Nathalie Japkowicz:
Mean User-Text Agglomeration (MUTA): Practical User Representation and Visualization for Detection of Online Influence Operations. CSoNet 2021: 305-318 - [c103]Yueyang Liu, Zois Boukouvalas, Nathalie Japkowicz:
A Semi-supervised Framework for Misinformation Detection. DS 2021: 57-66 - [c102]Colin Bellinger, Roberto Corizzo, Nathalie Japkowicz:
Calibrated Resampling for Imbalanced and Long-Tails in Deep Learning. DS 2021: 242-252 - [c101]Caitlin Moroney, Evan Crothers, Sudip Mittal, Anupam Joshi, Tülay Adali, Christine Mallinson, Nathalie Japkowicz, Zois Boukouvalas:
The Case for Latent Variable Vs Deep Learning Methods in Misinformation Detection: An Application to COVID-19. DS 2021: 422-432 - [c100]Roberto Corizzo, Michelangelo Ceci, Gianvito Pio, Paolo Mignone, Nathalie Japkowicz:
Spatially-Aware Autoencoders for Detecting Contextual Anomalies in Geo-Distributed Data. DS 2021: 461-471 - [c99]Bartosz Krawczyk, Colin Bellinger, Roberto Corizzo, Nathalie Japkowicz:
Undersampling with Support Vectors for Multi-Class Imbalanced Data Classification. IJCNN 2021: 1-7 - [c98]Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michal Wozniak, Shuo Wang:
3rd Workshop on Learning with Imbalanced Domains: Preface. LIDTA@ECML/PKDD 2021: 1-6 - [e5]Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michal Wozniak, Shuo Wang:
Third International Workshop on Learning with Imbalanced Domains: Theory and Applications, LIDTA 2021, Bilbao, Spain, September 17, 2021. Proceedings of Machine Learning Research 154, PMLR 2021 [contents] - [i5]Kushankur Ghosh, Colin Bellinger, Roberto Corizzo, Bartosz Krawczyk, Nathalie Japkowicz:
On the combined effect of class imbalance and concept complexity in deep learning. CoRR abs/2107.14194 (2021) - 2020
- [j36]Michelangelo Ceci, Roberto Corizzo, Nathalie Japkowicz, Paolo Mignone, Gianvito Pio:
ECHAD: Embedding-Based Change Detection From Multivariate Time Series in Smart Grids. IEEE Access 8: 156053-156066 (2020) - [j35]Roberto Corizzo, Michelangelo Ceci, Eftim Zdravevski, Nathalie Japkowicz:
Scalable auto-encoders for gravitational waves detection from time series data. Expert Syst. Appl. 151: 113378 (2020) - [j34]Zhen Liu, Nathalie Japkowicz, Ruoyu Wang, Yongming Cai, Deyu Tang, Xianfa Cai:
A statistical pattern based feature extraction method on system call traces for anomaly detection. Inf. Softw. Technol. 126: 106348 (2020) - [j33]Colin Bellinger, Shiven Sharma, Nathalie Japkowicz, Osmar R. Zaïane:
Framework for extreme imbalance classification: SWIM - sampling with the majority class. Knowl. Inf. Syst. 62(3): 841-866 (2020) - [j32]Zhen Liu, Nathalie Japkowicz, Ruoyu Wang, Li Liu:
A sub-concept-based feature selection method for one-class classification. Soft Comput. 24(10): 7047-7062 (2020) - [j31]Jing-Hao Xue, Zhanyu Ma, Manuel Roveri, Nathalie Japkowicz:
Guest Editorial Special Issue on Recent Advances in Theory, Methodology, and Applications of Imbalanced Learning. IEEE Trans. Neural Networks Learn. Syst. 31(8): 2688-2690 (2020) - [c97]Nicholas J. Denis, Danny French, Sébastien Gilbert, Nathalie Japkowicz:
A Cost Skew Aware Predictive System for Chest Drain Management. Canadian AI 2020: 170-176 - [c96]Jonathan Kaufmann, Kathryn Asalone, Roberto Corizzo, Colin Saldanha, John R. Bracht, Nathalie Japkowicz:
One-Class Ensembles for Rare Genomic Sequences Identification. DS 2020: 340-354 - [c95]Zhen Liu, Nathalie Japkowicz, Ruoyu Wang:
Subconcept Based One Class Classification Method with Cluster Updating. ICMLC 2020: 23-28 - [c94]Liming Zhang, Wenbin Zhang, Nathalie Japkowicz:
Conditional-UNet: A Condition-aware Deep Model for Coherent Human Activity Recognition From Wearables. ICPR 2020: 5889-5896 - [i4]Zois Boukouvalas, Christine Mallinson, Evan Crothers, Nathalie Japkowicz, Aritran Piplai, Sudip Mittal, Anupam Joshi, Tülay Adali:
Independent Component Analysis for Trustworthy Cyberspace during High Impact Events: An Application to Covid-19. CoRR abs/2006.01284 (2020) - [i3]Colin Bellinger, Roberto Corizzo, Nathalie Japkowicz:
ReMix: Calibrated Resampling for Class Imbalance in Deep learning. CoRR abs/2012.02312 (2020)
2010 – 2019
- 2019
- [j30]Roberto Corizzo, Michelangelo Ceci, Nathalie Japkowicz:
Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data. Big Data Res. 16: 18-35 (2019) - [j29]Zhen Liu, Nathalie Japkowicz, Ruoyu Wang, Deyu Tang:
Adaptive learning on mobile network traffic data. Connect. Sci. 31(2): 185-214 (2019) - [j28]Ameya Malondkar, Roberto Corizzo, Iluju Kiringa, Michelangelo Ceci, Nathalie Japkowicz:
Spark-GHSOM: Growing Hierarchical Self-Organizing Map for large scale mixed attribute datasets. Inf. Sci. 496: 572-591 (2019) - [j27]Zhen Liu, Ruoyu Wang, Nathalie Japkowicz, Yongming Cai, Deyu Tang, Xianfa Cai:
Mobile app traffic flow feature extraction and selection for improving classification robustness. J. Netw. Comput. Appl. 125: 190-208 (2019) - [c93]William Klement, Sébastien Gilbert, Donna E. Maziak, Andrew J. E. Seely, Farid M. Shamji, Sudhir R. Sundaresan, Patrick J. Villeneuve, Nathalie Japkowicz:
Chest Tube Management After Lung Resection Surgery using a Classifier. DSAA 2019: 432-441 - [c92]Li Liu, Nathalie Japkowicz, Dan Tao, Zhen Liu:
Learning with Drift Detection based on k Time Sub-concept Windows. ICCE-TW 2019: 1-2 - [c91]Sid Ryan, Roberto Corizzo, Iluju Kiringa, Nathalie Japkowicz:
Deep Learning Versus Conventional Learning in Data Streams with Concept Drifts. ICMLA 2019: 1306-1313 - [c90]Sid Ryan, Roberto Corizzo, Iluju Kiringa, Nathalie Japkowicz:
Pattern and Anomaly Localization in Complex and Dynamic Data. ICMLA 2019: 1756-1763 - [c89]Evan Crothers, Nathalie Japkowicz, Herna L. Viktor:
Towards Ethical Content-Based Detection Of Online Influence Campaigns. MLSP 2019: 1-6 - [i2]Richard Hugh Moulton, Herna L. Viktor, Nathalie Japkowicz, João Gama:
Contextual One-Class Classification in Data Streams. CoRR abs/1907.04233 (2019) - [i1]Evan Crothers, Nathalie Japkowicz, Herna L. Viktor:
Towards Ethical Content-Based Detection of Online Influence Campaigns. CoRR abs/1908.11030 (2019) - 2018
- [j26]Daniel Shapiro, Nathalie Japkowicz, Mathieu Lemay, Miodrag Bolic:
Fuzzy String Matching with a Deep Neural Network. Appl. Artif. Intell. 32(1): 1-12 (2018) - [j25]Yue Dong, Nathalie Japkowicz:
Threaded ensembles of autoencoders for stream learning. Comput. Intell. 34(1): 261-281 (2018) - [j24]Shiven Sharma, Anil Somayaji, Nathalie Japkowicz:
Learning over subconcepts: Strategies for 1-class classification. Comput. Intell. 34(2): 440-467 (2018) - [j23]Colin Bellinger, Shiven Sharma, Nathalie Japkowicz:
One-class classification - From theory to practice: A case-study in radioactive threat detection. Expert Syst. Appl. 108: 223-232 (2018) - [j22]Nathalie Japkowicz, Yuval Elovici:
Introduction to the Special Issue on Data Mining for Cybersecurity. IEEE Intell. Syst. 33(2): 3-4 (2018) - [j21]Adrian Taylor, Sylvain P. Leblanc, Nathalie Japkowicz:
Probing the Limits of Anomaly Detectors for Automobiles with a Cyberattack Framework. IEEE Intell. Syst. 33(2): 54-62 (2018) - [j20]Zhao Yang, Nathalie Japkowicz:
Anomaly behaviour detection based on the meta-Morisita index for large scale spatio-temporal data set. J. Big Data 5: 23 (2018) - [j19]Colin Bellinger, Christopher Drummond, Nathalie Japkowicz:
Manifold-based synthetic oversampling with manifold conformance estimation. Mach. Learn. 107(3): 605-637 (2018) - [c88]James Clark, Zhen Liu, Nathalie Japkowicz:
Adaptive Threshold for Outlier Detection on Data Streams. DSAA 2018: 41-49 - [c87]Shiven Sharma, Colin Bellinger, Bartosz Krawczyk, Osmar R. Zaïane, Nathalie Japkowicz:
Synthetic Oversampling with the Majority Class: A New Perspective on Handling Extreme Imbalance. ICDM 2018: 447-456 - [c86]Luís Torgo, Stan Matwin, Nathalie Japkowicz, Bartosz Krawczyk, Nuno Moniz, Paula Branco:
2nd Workshop on Learning with Imbalanced Domains: Preface. LIDTA@ECML/PKDD 2018: 1-7 - [c85]Richard Hugh Moulton, Herna L. Viktor, Nathalie Japkowicz, João Gama:
Clustering in the Presence of Concept Drift. ECML/PKDD (1) 2018: 339-355 - [e4]Michelangelo Ceci, Nathalie Japkowicz, Jiming Liu, George A. Papadopoulos, Zbigniew W. Ras:
Foundations of Intelligent Systems - 24th International Symposium, ISMIS 2018, Limassol, Cyprus, October 29-31, 2018, Proceedings. Lecture Notes in Computer Science 11177, Springer 2018, ISBN 978-3-030-01850-4 [contents] - 2017
- [j18]Nathalie Japkowicz, Stan Matwin:
Special issue on discovery science. Mach. Learn. 106(6): 741-743 (2017) - [c84]Mohsen Ghazel, Nathalie Japkowicz:
Improving Active Learning for One-Class Classification Using Dimensionality Reduction. Canadian AI 2017: 39-44 - [c83]Nathalie Japkowicz, Farzan Erlik Nowruzi, Robert Laganière:
Homography Estimation from Image Pairs with Hierarchical Convolutional Networks. ICCV Workshops 2017: 904-911 - [c82]Zhao Yang, Nathalie Japkowicz:
Meta-Morisita Index: Anomaly Behaviour Detection for Large Scale Tracking Data with Spatio-Temporal Marks. ICDM Workshops 2017: 675-682 - [c81]Colin Bellinger, Shiven Sharma, Osmar R. Zaïane, Nathalie Japkowicz:
Sampling a Longer Life: Binary versus One-class classification Revisited. LIDTA@PKDD/ECML 2017: 64-78 - 2016
- [c80]Yue Dong, Nathalie Japkowicz:
Threaded Ensembles of Supervised and Unsupervised Neural Networks for Stream Learning. Canadian AI 2016: 304-315 - [c79]Adrian Taylor, Sylvain P. Leblanc, Nathalie Japkowicz:
Anomaly Detection in Automobile Control Network Data with Long Short-Term Memory Networks. DSAA 2016: 130-139 - [c78]Colin Bellinger, Christopher Drummond, Nathalie Japkowicz:
Beyond the Boundaries of SMOTE - A Framework for Manifold-Based Synthetically Oversampling. ECML/PKDD (1) 2016: 248-263 - 2015
- [j17]Mohamed A. Ghadie, Nathalie Japkowicz, Theodore J. Perkins:
Gene selection for the reconstruction of stem cell differentiation trees: a linear programming approach. Bioinform. 31(16): 2676-2682 (2015) - [j16]Xuan Liu, Xiaoguang Wang, Stan Matwin, Nathalie Japkowicz:
Meta-MapReduce for scalable data mining. J. Big Data 2: 14 (2015) - [c77]Nathalie Japkowicz, Vincent Barnabe-Lortie, Shawn Horvatic, Jie Zhou:
Multi-class learning using data driven ECOC with deep search and re-balancing. DSAA 2015: 1-10 - [c76]Vincent Barnabe-Lortie, Colin Bellinger, Nathalie Japkowicz:
Active Learning for One-Class Classification. ICMLA 2015: 390-395 - [c75]Colin Bellinger, Ali Amid, Nathalie Japkowicz, Herna L. Viktor:
Multi-label Classification of Anemia Patients. ICMLA 2015: 825-830 - [c74]Colin Bellinger, Nathalie Japkowicz, Christopher Drummond:
Synthetic Oversampling for Advanced Radioactive Threat Detection. ICMLA 2015: 948-953 - [c73]Adrian Taylor, Nathalie Japkowicz, Sylvain P. Leblanc:
Frequency-based anomaly detection for the automotive CAN bus. WCICSS 2015: 45-49 - [e3]Nathalie Japkowicz, Stan Matwin:
Discovery Science - 18th International Conference, DS 2015, Banff, AB, Canada, October 4-6, 2015, Proceedings. Lecture Notes in Computer Science 9356, Springer 2015, ISBN 978-3-319-24281-1 [contents] - 2014
- [j15]Xiaoguang Wang, Xuan Liu, Nathalie Japkowicz, Stan Matwin:
Automated Approach To Classification Of Mine-Like Objects Using Multiple-Aspect Sonar Images. J. Artif. Intell. Soft Comput. Res. 4(2): 133-148 (2014) - [c72]Xiaoguang Wang, Xuan Liu, Nathalie Japkowicz, Stan Matwin:
Ensemble of Multiple Kernel SVM Classifiers. Canadian AI 2014: 239-250 - [c71]Xiaoguang Wang, Xuan Liu, Stan Matwin, Nathalie Japkowicz, Hongyu Guo:
A multi-view two-level classification method for generalized multi-instance problems. IEEE BigData 2014: 104-111 - [c70]Xiaoguang Wang, Xuan Liu, Stan Matwin, Nathalie Japkowicz:
Applying instance-weighted support vector machines to class imbalanced datasets. IEEE BigData 2014: 112-118 - [c69]Hang Shao, Nathalie Japkowicz, Rami S. Abielmona, Rafael Falcon:
Vessel track correlation and association using fuzzy logic and Echo State Networks. IEEE Congress on Evolutionary Computation 2014: 2322-2329 - [c68]Xiaoguang Wang, Xuan Liu, Nathalie Japkowicz, Stan Matwin, Bao Nguyen:
Automatic Target Recognition using multiple-aspect sonar images. IEEE Congress on Evolutionary Computation 2014: 2330-2337 - [c67]Vincent Barnabe-Lortie, Colin Bellinger, Nathalie Japkowicz:
Smoothing gamma ray spectra to improve outlier detection. CISDA 2014: 1-8 - [c66]Hang Shao, Nathalie Japkowicz:
Explicit feature mapping via multi-layer perceptron and its application to Mine-Like Objects detection. IJCNN 2014: 1055-1062 - 2013
- [c65]Xiaoguang Wang, Stan Matwin, Nathalie Japkowicz, Xuan Liu:
Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets. Canadian AI 2013: 174-186 - [c64]Xuan Liu, Xiaoguang Wang, Nathalie Japkowicz, Stan Matwin:
An Ensemble Method Based on AdaBoost and Meta-Learning. Canadian AI 2013: 278-285 - [c63]Reva Freedman, Nathalie Japkowicz:
On the Benefits (or Not) of a Clustering Algorithm in Student Tracking. AIED 2013: 840-843 - [c62]