default search action
David Poole 0001
David L. Poole
Person information
- affiliation: University of British Columbia, Vancouver, Canada
- affiliation (PhD 1983): Australian National University, Canberra, ACT, Australia
Other persons with the same name
- David Poole 0002 — University of Central Florida, Orlando, FL, USA
- David Poole 0003 (aka: David J. Poole) — AT&T Labs, Florham Park, NJ, USA
- David Poole 0004 — Iowa State University, Department of Chemistry, Ames, IA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j39]Bahare Fatemi, Perouz Taslakian, David Vázquez, David Poole:
Knowledge Hypergraph Embedding Meets Relational Algebra. J. Mach. Learn. Res. 24: 105:1-105:34 (2023) - 2022
- [p2]David Poole, Frank Wood:
Probabilistic Programming Languages: Independent Choices and Deterministic Systems. Probabilistic and Causal Inference 2022: 691-712 - [i47]Matthew C. Dirks, David L. Poole:
Automatic Neural Network Hyperparameter Optimization for Extrapolation: Lessons Learned from Visible and Near-Infrared Spectroscopy of Mango Fruit. CoRR abs/2210.01124 (2022) - [i46]Matthew Dirks, David Poole:
Auto-Encoder Neural Network Incorporating X-Ray Fluorescence Fundamental Parameters with Machine Learning. CoRR abs/2210.12239 (2022) - 2021
- [j38]Nandini Ramanan, Gautam Kunapuli, Tushar Khot, Bahare Fatemi, Seyed Mehran Kazemi, David Poole, Kristian Kersting, Sriraam Natarajan:
Structure learning for relational logistic regression: an ensemble approach. Data Min. Knowl. Discov. 35(5): 2089-2111 (2021) - [c99]Giuseppe M. J. Barca, Jorge L. Galvez Vallejo, David L. Poole, Melisa Alkan, Ryan Stocks, Alistair P. Rendell, Mark S. Gordon:
Enabling large-scale correlated electronic structure calculations: scaling the RI-MP2 method on summit. SC 2021: 40 - [i45]Bahare Fatemi, Perouz Taslakian, David Vázquez, David Poole:
Knowledge Hypergraph Embedding Meets Relational Algebra. CoRR abs/2102.09557 (2021) - 2020
- [c98]Chenliang Zhou, Dominic Kuang, Jingru Liu, Hanbo Yang, Zijia Zhang, Alan K. Mackworth, David L. Poole:
AISpace2: An Interactive Visualization Tool for Learning and Teaching Artificial Intelligence. AAAI 2020: 13436-13443 - [c97]Bahare Fatemi, Perouz Taslakian, David Vázquez, David Poole:
Knowledge Hypergraphs: Prediction Beyond Binary Relations. IJCAI 2020: 2191-2197 - [c96]Ainaz Hajimoradlou, Gioachino Roberti, David Poole:
Predicting Landslides Using Locally Aligned Convolutional Neural Networks. IJCAI 2020: 3342-3348 - [c95]Giuseppe M. J. Barca, David L. Poole, Jorge L. Galvez Vallejo, Melisa Alkan, Colleen Bertoni, Alistair P. Rendell, Mark S. Gordon:
Scaling the hartree-fock matrix build on summit. SC 2020: 81 - [i44]Matthew C. Dirks, David Poole:
Binarised Regression with Instance-Varying Costs: Evaluation using Impact Curves. CoRR abs/2008.07349 (2020)
2010 – 2019
- 2019
- [c94]Bahare Fatemi, Siamak Ravanbakhsh, David Poole:
Improved Knowledge Graph Embedding Using Background Taxonomic Information. AAAI 2019: 3526-3533 - [i43]Bahare Fatemi, Perouz Taslakian, David Vázquez, David Poole:
Knowledge Hypergraphs: Extending Knowledge Graphs Beyond Binary Relations. CoRR abs/1906.00137 (2019) - [i42]Ainaz Hajimoradlou, Gioachino Roberti, David Poole:
A Probabilistic Approach for Predicting Landslides by Learning a Self-Aligned Deep Convolutional Model. CoRR abs/1911.04651 (2019) - 2018
- [j37]Seyed Mehran Kazemi, David Poole:
Bridging Weighted Rules and Graph Random Walks for Statistical Relational Models. Frontiers Robotics AI 5: 8 (2018) - [j36]Sanjana Bajracharya, Giuseppe Carenini, Brent C. Chamberlain, Kai Di Chen, Daniel Klein, David Poole, Hamed Taheri, Gunilla Öberg:
Interactive Visualization for Group Decision Analysis. Int. J. Inf. Technol. Decis. Mak. 17(6): 1839-1864 (2018) - [c93]Seyed Mehran Kazemi, David Poole:
RelNN: A Deep Neural Model for Relational Learning. AAAI 2018: 6367-6375 - [c92]Nandini Ramanan, Gautam Kunapuli, Tushar Khot, Bahare Fatemi, Seyed Mehran Kazemi, David Poole, Kristian Kersting, Sriraam Natarajan:
Structure Learning for Relational Logistic Regression: An Ensemble Approach. KR 2018: 661-662 - [c91]Seyed Mehran Kazemi, David Poole:
SimplE Embedding for Link Prediction in Knowledge Graphs. NeurIPS 2018: 4289-4300 - [i41]Seyed Mehran Kazemi, David Poole:
SimplE Embedding for Link Prediction in Knowledge Graphs. CoRR abs/1802.04868 (2018) - [i40]Bahare Fatemi, Seyed Mehran Kazemi, David Poole:
Record Linkage to Match Customer Names: A Probabilistic Approach. CoRR abs/1806.10928 (2018) - [i39]Nandini Ramanan, Gautam Kunapuli, Tushar Khot, Bahare Fatemi, Seyed Mehran Kazemi, David Poole, Kristian Kersting, Sriraam Natarajan:
Structure Learning for Relational Logistic Regression: An Ensemble Approach. CoRR abs/1808.02123 (2018) - [i38]Bahare Fatemi, Siamak Ravanbakhsh, David Poole:
Improved Knowledge Graph Embedding using Background Taxonomic Information. CoRR abs/1812.03235 (2018) - 2017
- [j35]David Buchman, David Poole:
Negative probabilities in probabilistic logic programs. Int. J. Approx. Reason. 83: 43-59 (2017) - [c90]David Buchman, David Poole:
Why Rules are Complex: Real-Valued Probabilistic Logic Programs are not Fully Expressive. UAI 2017 - [i37]Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den Broeck, David Poole:
Domain Recursion for Lifted Inference with Existential Quantifiers. CoRR abs/1707.07763 (2017) - [i36]Seyed Mehran Kazemi, Bahare Fatemi, Alexandra Kim, Zilun Peng, Moumita Roy Tora, Xing Zeng, Matthew C. Dirks, David Poole:
Comparing Aggregators for Relational Probabilistic Models. CoRR abs/1707.07785 (2017) - [i35]Seyed Mehran Kazemi, David Poole:
RelNN: A Deep Neural Model for Relational Learning. CoRR abs/1712.02831 (2017) - 2016
- [b3]Luc De Raedt, Kristian Kersting, Sriraam Natarajan, David Poole:
Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers 2016, ISBN 978-3-031-00022-5 - [c89]Seyed Mehran Kazemi, David Poole:
Lazy Arithmetic Circuits. AAAI Workshop: Beyond NP 2016 - [c88]Matthew C. Dirks, Andrew Csinger, Andrew Bamber, David Poole:
Representation, Reasoning, and Learning for a Relational Influence Diagram Applied to a Real-Time Geological Domain. Canadian AI 2016: 257-262 - [c87]Thomas Lukasiewicz, Maria Vanina Martinez, David Poole, Gerardo Ignacio Simari:
Probabilistic Models over Weighted Orderings: Fixed-Parameter Tractable Variable Elimination. KR 2016: 494-504 - [c86]David Buchman, David Poole:
Negation Without Negation in Probabilistic Logic Programming. KR 2016: 529-532 - [c85]Seyed Mehran Kazemi, David Poole:
Knowledge Compilation for Lifted Probabilistic Inference: Compiling to a Low-Level Language. KR 2016: 561-564 - [c84]Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den Broeck, David Poole:
New Liftable Classes for First-Order Probabilistic Inference. NIPS 2016: 3117-3125 - [i34]Seyed Mehran Kazemi, David Poole:
Why is Compiling Lifted Inference into a Low-Level Language so Effective? CoRR abs/1606.04512 (2016) - [i33]Bahare Fatemi, Seyed Mehran Kazemi, David Poole:
A Learning Algorithm for Relational Logistic Regression: Preliminary Results. CoRR abs/1606.08531 (2016) - [i32]Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den Broeck, David Poole:
New Liftable Classes for First-Order Probabilistic Inference. CoRR abs/1610.08445 (2016) - 2015
- [j34]Stefano V. Albrecht, André da Motta Salles Barreto, Darius Braziunas, David L. Buckeridge, Heriberto Cuayáhuitl, Nina Dethlefs, Markus Endres, Amir-massoud Farahmand, Mark Fox, Lutz Frommberger, Sam Ganzfried, Yolanda Gil, Sébastien Guillet, Lawrence E. Hunter, Arnav Jhala, Kristian Kersting, George Dimitri Konidaris, Freddy Lécué, Sheila A. McIlraith, Sriraam Natarajan, Zeinab Noorian, David Poole, Rémi Ronfard, Alessandro Saffiotti, Arash Shaban-Nejad, Biplav Srivastava, Gerald Tesauro, Rosario Uceda-Sosa, Guy Van den Broeck, Martijn van Otterlo, Byron C. Wallace, Paul Weng, Jenna Wiens, Jie Zhang:
Reports of the AAAI 2014 Conference Workshops. AI Mag. 36(1): 87-98 (2015) - [c83]David Buchman, David Poole:
Representing Aggregators in Relational Probabilistic Models. AAAI 2015: 3489-3495 - 2014
- [j33]Brent C. Chamberlain, Giuseppe Carenini, Gunilla Öberg, David Poole, Hamed Taheri:
A Decision Support System for the Design and Evaluation of Sustainable Wastewater Solutions. IEEE Trans. Computers 63(1): 129-141 (2014) - [c82]Guy Van den Broeck, Kristian Kersting, Sriraam Natarajan, David Poole:
Preface. StarAI@AAAI 2014 - [c81]Matthew C. Dirks, Andrew Csinger, Andrew Bamber, David Poole:
Representation, Reasoning, and Learning for a Relational Influence Diagram Applied to a Real-Time Geological Domain. StarAI@AAAI 2014 - [c80]Seyed Mehran Kazemi, David Buchman, Kristian Kersting, Sriraam Natarajan, David Poole:
Relational Logistic Regression: The Directed Analog of Markov Logic Networks. StarAI@AAAI 2014 - [c79]Seyed Mehran Kazemi, David Poole:
Elimination Ordering in Lifted First-Order Probabilistic Inference. AAAI 2014: 863-870 - [c78]Seyed Mehran Kazemi, David Buchman, Kristian Kersting, Sriraam Natarajan, David Poole:
Relational Logistic Regression. KR 2014 - [c77]David Poole, David Buchman, Seyed Mehran Kazemi, Kristian Kersting, Sriraam Natarajan:
Population Size Extrapolation in Relational Probabilistic Modelling. SUM 2014: 292-305 - 2013
- [j32]Vikas Agrawal, Christopher Archibald, Mehul Bhatt, Hung Bui, Diane J. Cook, Juan Cortés, Christopher W. Geib, Vibhav Gogate, Hans W. Guesgen, Dietmar Jannach, Michael Johanson, Kristian Kersting, George Dimitri Konidaris, Lars Kotthoff, Martin Michalowski, Sriraam Natarajan, Barry O'Sullivan, Marc Pickett, Vedran Podobnik, David Poole, Lokendra Shastri, Amarda Shehu, Gita Sukthankar:
The AAAI-13 Conference Workshops. AI Mag. 34(4): 9- (2013) - [j31]David Poole:
Foundations of model construction in feature-based semantic science. J. Log. Comput. 23(5): 1081-1096 (2013) - [c76]Vibhav Gogate, Kristian Kersting, Sriraam Natarajan, David Poole:
Preface. StarAI@AAAI 2013 - [c75]Chia-Li Kuo, David Poole:
On Integrating Ontologies with Relational Probabilistic Models. StarAI@AAAI 2013 - [c74]David Poole, Mark Crowley:
Cyclic Causal Models with Discrete Variables: Markov Chain Equilibrium Semantics and Sample Ordering. IJCAI 2013: 1060-1068 - [c73]Chia-Li Kuo, David Buchman, Arzoo Katiyar, David Poole:
Probabilistic Reasoning with Undefined Properties in Ontologically-Based Belief Networks. IJCAI 2013: 2532-2539 - [i31]Rita Sharma, David Poole:
Symmetric Collaborative Filtering Using the Noisy Sensor Model. CoRR abs/1301.2309 (2013) - [i30]Peter Gorniak, David Poole:
Building a Stochastic Dynamic Model of Application Use. CoRR abs/1301.3859 (2013) - [i29]Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, David Poole:
Reasoning With Conditional Ceteris Paribus Preference Statem. CoRR abs/1301.6681 (2013) - [i28]Michael C. Horsch, David L. Poole:
Estimating the Value of Computation in Flexible Information Refinement. CoRR abs/1301.6706 (2013) - [i27]Michael C. Horsch, David L. Poole:
An Anytime Algorithm for Decision Making under Uncertainty. CoRR abs/1301.7384 (2013) - [i26]David L. Poole:
Context-Specific Approximation in Probabilistic Inference. CoRR abs/1301.7408 (2013) - [i25]Michael C. Horsch, David L. Poole:
Flexible Policy Construction by Information Refinement. CoRR abs/1302.3583 (2013) - [i24]David L. Poole:
A Framework for Decision-Theoretic Planning I: Combining the Situation Calculus, Conditional Plans, Probability and Utility. CoRR abs/1302.3597 (2013) - [i23]David L. Poole:
Exploiting the Rule Structure for Decision Making within the Independent Choice Logic. CoRR abs/1302.4978 (2013) - [i22]Runping Qi, Nevin Lianwen Zhang, David L. Poole:
Solving Asymmetric Decision Problems with Influence Diagrams. CoRR abs/1302.6840 (2013) - [i21]Nevin Lianwen Zhang, David L. Poole:
Inter-causal Independence and Heterogeneous Factorization. CoRR abs/1302.6855 (2013) - [i20]David L. Poole:
The use of conflicts in searching Bayesian networks. CoRR abs/1303.1497 (2013) - [i19]Nevin Lianwen Zhang, Runping Qi, David L. Poole:
Incremental computation of the value of perfect information in stepwise-decomposable influence diagrams. CoRR abs/1303.1502 (2013) - [i18]Yang Xiang, David L. Poole, Michael P. Beddoes:
Exploring Localization in Bayesian Networks for Large Expert Systems. CoRR abs/1303.5438 (2013) - [i17]Nevin Lianwen Zhang, David L. Poole:
Sidestepping the Triangulation Problem in Bayesian Net Computations. CoRR abs/1303.5440 (2013) - [i16]David L. Poole:
Representing Bayesian Networks within Probabilistic Horn Abduction. CoRR abs/1303.5738 (2013) - [i15]Runping Qi, David L. Poole:
High Level Path Planning with Uncertainty. CoRR abs/1303.5740 (2013) - [i14]David L. Poole, Gregory M. Provan:
What is an Optimal Diagnosis? CoRR abs/1304.1087 (2013) - [i13]Michael C. Horsch, David L. Poole:
A Dynamic Approach to Probabilistic Inference. CoRR abs/1304.1100 (2013) - [i12]Yang Xiang, Michael P. Beddoes, David L. Poole:
Can Uncertainty Management be Realized in a Finite Totally Ordered Probability Algebra? CoRR abs/1304.1535 (2013) - [i11]Eric Neufeld, David L. Poole:
Probabilistic Semantics and Defaults. CoRR abs/1304.2370 (2013) - [i10]Eric Neufeld, David L. Poole:
Towards Solving the Multiple Extension Problem: Combining Defaults and Probabilities. CoRR abs/1304.2745 (2013) - [i9]Ramón López de Mántaras, David Poole:
Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (1994). CoRR abs/1304.3849 (2013) - 2012
- [j30]Michael Chiang, David Poole:
Reference classes and relational learning. Int. J. Approx. Reason. 53(3): 326-346 (2012) - [j29]Stephen H. Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach, Katsumi Inoue, Ashwin Srinivasan:
ILP turns 20 - Biography and future challenges. Mach. Learn. 86(1): 3-23 (2012) - [c72]Michael Chiang, David Poole:
A Search Algorithm for Latent Variable Models with Unbounded Domains. AAAI 2012: 1888-1894 - [c71]David Poole, David Buchman, Sriraam Natarajan, Kristian Kersting:
Aggregation and Population Growth: The Relational Logistic Regression and Markov Logic Cases. StarAI@UAI 2012 - [c70]David Buchman, Mark Schmidt, Shakir Mohamed, David Poole, Nando de Freitas:
On Sparse, Spectral and Other Parameterizations of Binary Probabilistic Models. AISTATS 2012: 173-181 - [i8]Jacek Kisynski, David Poole:
Constraint Processing in Lifted Probabilistic Inference. CoRR abs/1205.2635 (2012) - [i7]Mark Crowley, John Nelson, David Poole:
Seeing the Forest Despite the Trees: Large Scale Spatial-Temporal Decision Making. CoRR abs/1205.2651 (2012) - [i6]Peter Carbonetto, Jacek Kisynski, Nando de Freitas, David Poole:
Nonparametric Bayesian Logic. CoRR abs/1207.1375 (2012) - [i5]Rita Sharma, David Poole:
Efficient Inference in Large Discrete Domains. CoRR abs/1212.2518 (2012) - 2011
- [c69]Mark Crowley, David Poole:
Policy Gradient Planning for Environmental Decision Making with Existing Simulators. AAAI 2011: 1323-1330 - [c68]David Poole:
Logic, Probability and Computation: Foundations and Issues of Statistical Relational AI. LPNMR 2011: 1-9 - [i4]David L. Poole, Nevin Lianwen Zhang:
Exploiting Contextual Independence In Probabilistic Inference. CoRR abs/1106.4864 (2011) - [i3]Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, David Poole:
CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements. CoRR abs/1107.0023 (2011) - [i2]David Poole, Fahiem Bacchus, Jacek Kisynski:
Towards Completely Lifted Search-based Probabilistic Inference. CoRR abs/1107.4035 (2011) - 2010
- [b2]David Poole, Alan K. Mackworth:
Artificial Intelligence - Foundations of Computational Agents. Cambridge University Press 2010, ISBN 978-0-521-51900-7, pp. I-XVII, 1-662 - [j28]Rita Sharma, David Poole, Clinton Smyth:
A framework for ontologically-grounded probabilistic matching. Int. J. Approx. Reason. 51(2): 240-262 (2010) - [c67]Todd W. Neller, John DeNero, Dan Klein, Sven Koenig, William Yeoh, Xiaoming Zheng, Kenny Daniel, Alex Nash, Zachary Dodds, Giuseppe Carenini, David Poole, Christopher Brooks:
Model AI Assignments. EAAI 2010: 1919-1921 - [c66]David Poole:
Probabilistic Relational Learning and Inductive Logic Programming at a Global Scale. ILP 2010: 4-5 - [c65]David Poole:
Towards a Logic of Feature-Based Semantic Science Theories. KR 2010 - [e3]Maria Fox, David Poole:
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press 2010 [contents] - [e2]Henry A. Kautz, Kristian Kersting, Sriraam Natarajan, David Poole:
2nd International Workshop on Statistical Relational AI (StaRAI-12), held at the Uncertainty in Artificial Intelligence Conference (UAI 2012), Catalina Island, CA, USA, August 18, 2012. 2010 [contents]
2000 – 2009
- 2009
- [j27]David Poole, Clinton Smyth, Rita Sharma:
Ontology Design for Scientific Theories That Make Probabilistic Predictions. IEEE Intell. Syst. 24(1): 27-36 (2009) - [c64]Mark LaRosa, David Poole, Rudy Schusteritsch:
Designing and deploying usetube, google's global user experience observation and recording system. CHI Extended Abstracts 2009: 2971-2986 - [c63]Jacek Kisynski, David Poole:
Lifted Aggregation in Directed First-Order Probabilistic Models. IJCAI 2009: 1922-1929 - [c62]Mark Crowley, John Nelson, David Poole:
Seeing the Forest Despite the Trees: Large Scale Spatial-Temporal Decision Making. UAI 2009: 126-134 - [c61]Jacek Kisynski, David Poole:
Constraint Processing in Lifted Probabilistic Inference. UAI 2009: 293-302 - 2008
- [j26]Saleema Amershi, Giuseppe Carenini, Cristina Conati, Alan K. Mackworth, David Poole:
Pedagogy and usability in interactive algorithm visualizations: Designing and evaluating CIspace. Interact. Comput. 20(1): 64-96 (2008) - [c60]David Poole, Clinton Smyth, Rita Sharma:
Semantic Science and Machine-Accessible Scientific Theories. AAAI Spring Symposium: Semantic Scientific Knowledge Integration 2008: 81-86 - [c59]David Poole, Clinton Smyth, Rita Sharma:
Semantic Science: Ontologies, Data and Probabilistic Theories. URSW (LNCS Vol.) 2008: 26-40 - [p1]David Poole:
The Independent Choice Logic and Beyond. Probabilistic Inductive Logic Programming 2008: 222-243 - 2007
- [c58]David Poole:
Logical Generative Models for Probabilistic Reasoning about Existence, Roles and Identity. AAAI 2007: 1271-1277 - [c57]Mark Crowley, Brent Boerlage, David Poole:
Adding Local Constraints to Bayesian Networks. Canadian AI 2007: 344-355 - [c56]Rita Sharma, David Poole, Clinton Smyth:
A System for Ontologically-Grounded Probabilistic Matching. BMA 2007 - 2005
- [c55]Rita Sharma, David Poole:
Probability and Equality: A Probabilistic Model of Identity Uncertainty. Canadian AI 2005: 227-231 - [c54]David Poole, Clinton Smyth:
Type Uncertainty in Ontologically-Grounded Qualitative Probabilistic Matching. ECSQARU 2005: 763-774 - [c53]Rita Sharma, David Poole:
Probabilistic Reasoning with Hierarchically Structured Variables. IJCAI 2005: 1391-1397 - [c52]Saleema Amershi, N. Arksey, Giuseppe Carenini, Cristina Conati, Alan K. Mackworth, Heather Maclaren, David Poole:
Designing CIspace: pedagogy and usability in a learning environment for AI. ITiCSE 2005: 178-182 - [c51]Peter Carbonetto, Jacek Kisynski, Nando de Freitas, David Poole:
Nonparametric Bayesian Logic. UAI 2005: 85-93 - 2004
- [j25]Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, David Poole:
Preference-Based Constrained Optimization with CP-Nets. Comput. Intell. 20(2): 137-157 (2004) - [j24]Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, David Poole:
CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. J. Artif. Intell. Res. 21: 135-191 (2004) - [j23]Nando de Freitas, Richard Dearden, Frank Hutter, Rubén Morales-Menéndez, Jim Mutch, David Poole:
Diagnosis by a waiter and a Mars explorer. Proc. IEEE 92(3): 455-468 (2004) - [c50]David Poole:
Estimating the size of the telephone universe: a Bayesian Mark-recapture approach. KDD 2004: 659-664 - [c49]Clinton Smyth, David Poole:
Qualitative Probabilistic Matching with Hierarchical Descriptions. KR 2004: 479-487 - 2003
- [j22]David L. Poole, Nevin Lianwen Zhang:
Exploiting Contextual Independence In Probabilistic Inference. J. Artif. Intell. Res. 18: 263-313 (2003) - [c48]Rubén Morales-Menéndez, Nando de Freitas, David Poole:
Estimation and control of industrial processes with particle filters. ACC 2003: 579-584 - [c47]David Poole:
First-order probabilistic inference. IJCAI 2003: 985-991 - [c46]Giuseppe Carenini, Jocelyin Smith, David Poole:
Towards more conversational and collaborative recommender systems. IUI 2003: 12-18 - [c45]Rita Sharma, David Poole:
Efficient Inference in Large Discrete Domains. UAI 2003: 535-542 - 2002
- [c44]Rubén Morales-Menéndez, Nando de Freitas, David Poole:
Real-Time Monitoring of Complex Industrial Processes with Particle Filters. NIPS 2002: 1433-1440 - 2001
- [c43]