default search action
Alexander J. Smola
Alexander Johannes Smola – Alex J. Smola – Alex Smola
Person information
- affiliation: Carnegie Mellon University
- affiliation: Google Research
- affiliation: Yahoo! Research, Santa Clara
- affiliation: NICTA, Canberra Research Laboratory
- affiliation: Australian National University, Machine Learning Group
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j45]Yi Zhu, Zhongyue Zhang, Chongruo Wu, Zhi Zhang, Tong He, Hang Zhang, R. Manmatha, Mu Li, Alexander J. Smola:
Improving Semantic Segmentation via Efficient Self-Training. IEEE Trans. Pattern Anal. Mach. Intell. 46(3): 1589-1602 (2024) - [j44]Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, Alex Smola:
Multimodal Chain-of-Thought Reasoning in Language Models. Trans. Mach. Learn. Res. 2024 (2024) - [c223]Rasool Fakoor, Jonas Mueller, Zachary Chase Lipton, Pratik Chaudhari, Alex Smola:
Time-Varying Propensity Score to Bridge the Gap between the Past and Present. ICLR 2024 - 2023
- [j43]Rasool Fakoor, Taesup Kim, Jonas Mueller, Alexander J. Smola, Ryan J. Tibshirani:
Flexible Model Aggregation for Quantile Regression. J. Mach. Learn. Res. 24: 162:1-162:45 (2023) - [c222]Jiaao Chen, Aston Zhang, Mu Li, Alex Smola, Diyi Yang:
A Cheaper and Better Diffusion Language Model with Soft-Masked Noise. EMNLP 2023: 4765-4775 - [c221]Zhuosheng Zhang, Aston Zhang, Mu Li, Alex Smola:
Automatic Chain of Thought Prompting in Large Language Models. ICLR 2023 - [c220]Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, Diyi Yang:
Parameter-Efficient Fine-Tuning Design Spaces. ICLR 2023 - [c219]Saurabh Garg, Nick Erickson, James Sharpnack, Alex Smola, Sivaraman Balakrishnan, Zachary Chase Lipton:
RLSbench: Domain Adaptation Under Relaxed Label Shift. ICML 2023: 10879-10928 - [c218]Shuhuai Ren, Aston Zhang, Yi Zhu, Shuai Zhang, Shuai Zheng, Mu Li, Alexander J. Smola, Xu Sun:
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition. NeurIPS 2023 - [i83]Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, Diyi Yang:
Parameter-Efficient Fine-Tuning Design Spaces. CoRR abs/2301.01821 (2023) - [i82]Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, Alex Smola:
Multimodal Chain-of-Thought Reasoning in Language Models. CoRR abs/2302.00923 (2023) - [i81]Saurabh Garg, Nick Erickson, James Sharpnack, Alex Smola, Sivaraman Balakrishnan, Zachary C. Lipton:
RLSbench: Domain Adaptation Under Relaxed Label Shift. CoRR abs/2302.03020 (2023) - [i80]Shuhuai Ren, Aston Zhang, Yi Zhu, Shuai Zhang, Shuai Zheng, Mu Li, Alex Smola, Xu Sun:
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition. CoRR abs/2304.04704 (2023) - [i79]Jiaao Chen, Aston Zhang, Mu Li, Alex Smola, Diyi Yang:
A Cheaper and Better Diffusion Language Model with Soft-Masked Noise. CoRR abs/2304.04746 (2023) - 2022
- [j42]Jiarui Jin, Kounianhua Du, Weinan Zhang, Jiarui Qin, Yuchen Fang, Yong Yu, Zheng Zhang, Alexander J. Smola:
GraphHINGE: Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network. ACM Trans. Inf. Syst. 40(3): 45:1-45:35 (2022) - [c217]Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, Alexander J. Smola:
ResNeSt: Split-Attention Networks. CVPR Workshops 2022: 2735-2745 - [c216]Haotao Wang, Aston Zhang, Yi Zhu, Shuai Zheng, Mu Li, Alex J. Smola, Zhangyang Wang:
Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition. ICML 2022: 23446-23458 - [c215]Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, Alexander J. Smola:
BLISS: A Billion scale Index using Iterative Re-partitioning. KDD 2022: 486-495 - [c214]Nick Erickson, Xingjian Shi, James Sharpnack, Alexander J. Smola:
Multimodal AutoML for Image, Text and Tabular Data. KDD 2022: 4786-4787 - [c213]Kavosh Asadi, Rasool Fakoor, Omer Gottesman, Taesup Kim, Michael L. Littman, Alexander J. Smola:
Faster Deep Reinforcement Learning with Slower Online Network. NeurIPS 2022 - [c212]Benjamin Coleman, Santiago Segarra, Alexander J. Smola, Anshumali Shrivastava:
Graph Reordering for Cache-Efficient Near Neighbor Search. NeurIPS 2022 - [c211]Martin Klissarov, Rasool Fakoor, Jonas W. Mueller, Kavosh Asadi, Taesup Kim, Alexander J. Smola:
Adaptive Interest for Emphatic Reinforcement Learning. NeurIPS 2022 - [i78]Haotao Wang, Aston Zhang, Yi Zhu, Shuai Zheng, Mu Li, Alex Smola, Zhangyang Wang:
Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition. CoRR abs/2207.01160 (2022) - [i77]Rasool Fakoor, Jonas Mueller, Zachary C. Lipton, Pratik Chaudhari, Alexander J. Smola:
Data drift correction via time-varying importance weight estimator. CoRR abs/2210.01422 (2022) - [i76]Zhuosheng Zhang, Aston Zhang, Mu Li, Alex Smola:
Automatic Chain of Thought Prompting in Large Language Models. CoRR abs/2210.03493 (2022) - 2021
- [c210]Aashiq Muhamed, Liang Li, Xingjian Shi, Suri Yaddanapudi, Wayne Chi, Dylan Jackson, Rahul Suresh, Zachary C. Lipton, Alexander J. Smola:
Symbolic Music Generation with Transformer-GANs. AAAI 2021: 408-417 - [c209]Saurabh Garg, Yifan Wu, Alexander J. Smola, Sivaraman Balakrishnan, Zachary C. Lipton:
Mixture Proportion Estimation and PU Learning: A Modern Approach. NeurIPS 2021: 8532-8544 - [c208]Rasool Fakoor, Jonas Mueller, Kavosh Asadi, Pratik Chaudhari, Alexander J. Smola:
Continuous Doubly Constrained Batch Reinforcement Learning. NeurIPS 2021: 11260-11273 - [c207]Abdul Fatir Ansari, Konstantinos Benidis, Richard Kurle, Ali Caner Türkmen, Harold Soh, Alexander J. Smola, Bernie Wang, Tim Januschowski:
Deep Explicit Duration Switching Models for Time Series. NeurIPS 2021: 29949-29961 - [c206]Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li, Alexander J. Smola:
Benchmarking Multimodal AutoML for Tabular Data with Text Fields. NeurIPS Datasets and Benchmarks 2021 - [e3]Alex Smola, Alex Dimakis, Ion Stoica:
Proceedings of the Fourth Conference on Machine Learning and Systems, MLSys 2021, virtual, April 5-9, 2021. mlsys.org 2021 [contents] - [i75]Rasool Fakoor, Jonas Mueller, Pratik Chaudhari, Alexander J. Smola:
Continuous Doubly Constrained Batch Reinforcement Learning. CoRR abs/2102.09225 (2021) - [i74]Taesup Kim, Rasool Fakoor, Jonas Mueller, Alexander J. Smola, Ryan J. Tibshirani:
Deep Quantile Aggregation. CoRR abs/2103.00083 (2021) - [i73]Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, Alexander J. Smola:
IRLI: Iterative Re-partitioning for Learning to Index. CoRR abs/2103.09944 (2021) - [i72]Benjamin Coleman, Santiago Segarra, Anshumali Shrivastava, Alex Smola:
Graph Reordering for Cache-Efficient Near Neighbor Search. CoRR abs/2104.03221 (2021) - [i71]Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola:
Dive into Deep Learning. CoRR abs/2106.11342 (2021) - [i70]Abdul Fatir Ansari, Konstantinos Benidis, Richard Kurle, Ali Caner Türkmen, Harold Soh, Alexander J. Smola, Yuyang Wang, Tim Januschowski:
Deep Explicit Duration Switching Models for Time Series. CoRR abs/2110.13878 (2021) - [i69]Saurabh Garg, Yifan Wu, Alex Smola, Sivaraman Balakrishnan, Zachary C. Lipton:
Mixture Proportion Estimation and PU Learning: A Modern Approach. CoRR abs/2111.00980 (2021) - [i68]Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li, Alexander J. Smola:
Benchmarking Multimodal AutoML for Tabular Data with Text Fields. CoRR abs/2111.02705 (2021) - [i67]Kavosh Asadi, Rasool Fakoor, Omer Gottesman, Michael L. Littman, Alexander J. Smola:
Deep Q-Network with Proximal Iteration. CoRR abs/2112.05848 (2021) - 2020
- [c205]Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, Alexander J. Smola:
Meta-Q-Learning. ICLR 2020 - [c204]Jiarui Jin, Jiarui Qin, Yuchen Fang, Kounianhua Du, Weinan Zhang, Yong Yu, Zheng Zhang, Alexander J. Smola:
An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph. KDD 2020: 75-84 - [c203]Jonas Mueller, Xingjian Shi, Alexander J. Smola:
Faster, Simpler, More Accurate: Practical Automated Machine Learning with Tabular, Text, and Image Data. KDD 2020: 3509-3510 - [c202]Rasool Fakoor, Jonas Mueller, Nick Erickson, Pratik Chaudhari, Alexander J. Smola:
Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation. NeurIPS 2020 - [c201]Edo Liberty, Zohar S. Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, Can Balioglu, Saswata Chakravarty, Madhav Jha, Philip Gautier, David Arpin, Tim Januschowski, Valentin Flunkert, Yuyang Wang, Jan Gasthaus, Lorenzo Stella, Syama Sundar Rangapuram, David Salinas, Sebastian Schelter, Alex Smola:
Elastic Machine Learning Algorithms in Amazon SageMaker. SIGMOD Conference 2020: 731-737 - [i66]Chenguang Wang, Zihao Ye, Aston Zhang, Zheng Zhang, Alexander J. Smola:
Transformer on a Diet. CoRR abs/2002.06170 (2020) - [i65]Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, Alexander J. Smola:
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data. CoRR abs/2003.06505 (2020) - [i64]Rasool Fakoor, Pratik Chaudhari, Jonas Mueller, Alexander J. Smola:
TraDE: Transformers for Density Estimation. CoRR abs/2004.02441 (2020) - [i63]Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, Alexander J. Smola:
ResNeSt: Split-Attention Networks. CoRR abs/2004.08955 (2020) - [i62]Yi Zhu, Zhongyue Zhang, Chongruo Wu, Zhi Zhang, Tong He, Hang Zhang, R. Manmatha, Mu Li, Alexander J. Smola:
Improving Semantic Segmentation via Self-Training. CoRR abs/2004.14960 (2020) - [i61]Hyokun Yun, Michael Froh, Roshan Makhijani, Brian Luc, Alex Smola, Trishul Chilimbi:
Tiering as a Stochastic Submodular Optimization Problem. CoRR abs/2005.07893 (2020) - [i60]Rasool Fakoor, Jonas Mueller, Nick Erickson, Pratik Chaudhari, Alexander J. Smola:
Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation. CoRR abs/2006.14284 (2020) - [i59]Rasool Fakoor, Pratik Chaudhari, Alexander J. Smola:
DDPG++: Striving for Simplicity in Continuous-control Off-Policy Reinforcement Learning. CoRR abs/2006.15199 (2020) - [i58]Jiarui Jin, Jiarui Qin, Yuchen Fang, Kounianhua Du, Weinan Zhang, Yong Yu, Zheng Zhang, Alexander J. Smola:
An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph. CoRR abs/2007.00216 (2020) - [i57]Louis Abraham, Gary Bécigneul, Benjamin Coleman, Bernhard Schölkopf, Anshumali Shrivastava, Alexander J. Smola:
Bloom Origami Assays: Practical Group Testing. CoRR abs/2008.02641 (2020) - [i56]Jiarui Jin, Kounianhua Du, Weinan Zhang, Jiarui Qin, Yuchen Fang, Yong Yu, Zheng Zhang, Alexander J. Smola:
Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network. CoRR abs/2011.12683 (2020)
2010 – 2019
- 2019
- [c200]Haibin Lin, Xingjian Shi, Leonard Lausen, Aston Zhang, He He, Sheng Zha, Alexander J. Smola:
Dive into Deep Learning for Natural Language Processing. EMNLP/IJCNLP (2) 2019 - [c199]Jonas Mueller, Alex Smola:
Recognizing Variables from Their Data via Deep Embeddings of Distributions. ICDM 2019: 1264-1269 - [c198]Yuyang Wang, Alex Smola, Danielle C. Maddix, Jan Gasthaus, Dean P. Foster, Tim Januschowski:
Deep Factors for Forecasting. ICML 2019: 6607-6617 - [c197]Ali Caner Türkmen, Yuyang Wang, Alexander J. Smola:
FastPoint: Scalable Deep Point Processes. ECML/PKDD (2) 2019: 465-480 - [c196]Han Zhao, Otilia Stretcu, Alexander J. Smola, Geoffrey J. Gordon:
Efficient Multitask Feature and Relationship Learning. UAI 2019: 777-787 - [c195]Rasool Fakoor, Pratik Chaudhari, Alexander J. Smola:
P3O: Policy-on Policy-off Policy Optimization. UAI 2019: 1017-1027 - [i55]Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G. Andersen, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Eric S. Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros G. Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim M. Hazelwood, Furong Huang, Martin Jaggi, Kevin G. Jamieson, Michael I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konecný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Gordon Murray, Dimitris S. Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Randall Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric P. Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar:
SysML: The New Frontier of Machine Learning Systems. CoRR abs/1904.03257 (2019) - [i54]Chenguang Wang, Mu Li, Alexander J. Smola:
Language Models with Transformers. CoRR abs/1904.09408 (2019) - [i53]Rasool Fakoor, Pratik Chaudhari, Alexander J. Smola:
P3O: Policy-on Policy-off Policy Optimization. CoRR abs/1905.01756 (2019) - [i52]Yuyang Wang, Alex Smola, Danielle C. Maddix, Jan Gasthaus, Dean P. Foster, Tim Januschowski:
Deep Factors for Forecasting. CoRR abs/1905.12417 (2019) - [i51]Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J. Smola, Zheng Zhang:
Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. CoRR abs/1909.01315 (2019) - [i50]Jonas Mueller, Alex Smola:
Recognizing Variables from their Data via Deep Embeddings of Distributions. CoRR abs/1909.04844 (2019) - [i49]Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, Alexander J. Smola:
Meta-Q-Learning. CoRR abs/1910.00125 (2019) - 2018
- [c194]Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J. Smola, Le Song:
Variational Reasoning for Question Answering With Knowledge Graph. AAAI 2018: 6069-6076 - [c193]Sashank J. Reddi, Manzil Zaheer, Suvrit Sra, Barnabás Póczos, Francis R. Bach, Ruslan Salakhutdinov, Alexander J. Smola:
A Generic Approach for Escaping Saddle points. AISTATS 2018: 1233-1242 - [c192]Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl:
Compressed Video Action Recognition. CVPR 2018: 6026-6035 - [c191]Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex Smola, Andrew McCallum:
Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning. ICLR (Poster) 2018 - [c190]Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alexander J. Smola, Le Song:
Learning Steady-States of Iterative Algorithms over Graphs. ICML 2018: 1114-1122 - [c189]Zachary C. Lipton, Yu-Xiang Wang, Alexander J. Smola:
Detecting and Correcting for Label Shift with Black Box Predictors. ICML 2018: 3128-3136 - [c188]Alex Smola:
Algorithms, Data, Hardware and Tools: A Perfect Storm. KDD 2018: 2878 - [i48]Zachary C. Lipton, Yu-Xiang Wang, Alexander J. Smola:
Detecting and Correcting for Label Shift with Black Box Predictors. CoRR abs/1802.03916 (2018) - [i47]Emmanouil Antonios Platanios, Alex Smola:
Deep Graphs. CoRR abs/1806.01235 (2018) - [i46]Danielle C. Maddix, Yuyang Wang, Alex Smola:
Deep Factors with Gaussian Processes for Forecasting. CoRR abs/1812.00098 (2018) - 2017
- [c187]Travis Dick, Mu Li, Venkata Krishna Pillutla, Colin White, Maria-Florina Balcan, Alexander J. Smola:
Data Driven Resource Allocation for Distributed Learning. AAAI Workshops 2017 - [c186]Travis Dick, Mu Li, Venkata Krishna Pillutla, Colin White, Nina Balcan, Alexander J. Smola:
Data Driven Resource Allocation for Distributed Learning. AISTATS 2017: 662-671 - [c185]Ziqi Liu, Alexander J. Smola, Kyle Soska, Yu-Xiang Wang, Qinghua Zheng:
Attributing Hacks. AISTATS 2017: 794-802 - [c184]Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex Smola, Andrew McCallum:
Go for a Walk and Arrive at the Answer: Reasoning Over Knowledge Bases with Reinforcement Learning. AKBC@NIPS 2017 - [c183]Zichao Yang, Zhiting Hu, Yuntian Deng, Chris Dyer, Alexander J. Smola:
Neural Machine Translation with Recurrent Attention Modeling. EACL (2) 2017: 383-387 - [c182]R. Manmatha, Chao-Yuan Wu, Alexander J. Smola, Philipp Krähenbühl:
Sampling Matters in Deep Embedding Learning. ICCV 2017: 2859-2867 - [c181]Danica J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alexander J. Smola, Arthur Gretton:
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy. ICLR (Poster) 2017 - [c180]Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola:
Joint Training of Ratings and Reviews with Recurrent Recommender Networks. ICLR (Workshop) 2017 - [c179]Manzil Zaheer, Amr Ahmed, Alexander J. Smola:
Latent LSTM Allocation: Joint Clustering and Non-Linear Dynamic Modeling of Sequence Data. ICML 2017: 3967-3976 - [c178]Manzil Zaheer, Satwik Kottur, Amr Ahmed, José M. F. Moura, Alexander J. Smola:
Canopy Fast Sampling with Cover Trees. ICML 2017: 3977-3986 - [c177]Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, Alexander J. Smola:
Deep Sets. NIPS 2017: 3391-3401 - [c176]Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola, How Jing:
Recurrent Recommender Networks. WSDM 2017: 495-503 - [c175]How Jing, Alexander J. Smola:
Neural Survival Recommender. WSDM 2017: 515-524 - [i45]Han Zhao, Otilia Stretcu, Renato Negrinho, Alexander J. Smola, Geoffrey J. Gordon:
Efficient Multi-task Feature and Relationship Learning. CoRR abs/1702.04423 (2017) - [i44]Joachim de Curtò, Irene Zarza, Feng Yang, Alexander J. Smola, Luc Van Gool:
F2F: A Library For Fast Kernel Expansions. CoRR abs/1702.08159 (2017) - [i43]Joachim de Curtò, Irene Zarza, Alexander J. Smola, Luc Van Gool:
HashBox: Hash Hierarchical Segmentation exploiting Bounding Box Object Detection. CoRR abs/1702.08160 (2017) - [i42]Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, Alexander J. Smola:
Deep Sets. CoRR abs/1703.06114 (2017) - [i41]Hsiao-Yu Fish Tung, Chao-Yuan Wu, Manzil Zaheer, Alexander J. Smola:
Spectral Methods for Nonparametric Models. CoRR abs/1704.00003 (2017) - [i40]Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl:
Sampling Matters in Deep Embedding Learning. CoRR abs/1706.07567 (2017) - [i39]Sashank J. Reddi, Manzil Zaheer, Suvrit Sra, Barnabás Póczos, Francis R. Bach, Ruslan Salakhutdinov, Alexander J. Smola:
A Generic Approach for Escaping Saddle points. CoRR abs/1709.01434 (2017) - [i38]Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J. Smola, Le Song:
Variational Reasoning for Question Answering with Knowledge Graph. CoRR abs/1709.04071 (2017) - [i37]Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alexander J. Smola, Andrew McCallum:
Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning. CoRR abs/1711.05851 (2017) - [i36]Xun Zheng, Manzil Zaheer, Amr Ahmed, Yuan Wang, Eric P. Xing, Alexander J. Smola:
State Space LSTM Models with Particle MCMC Inference. CoRR abs/1711.11179 (2017) - [i35]Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl:
Compressed Video Action Recognition. CoRR abs/1712.00636 (2017) - 2016
- [j41]Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, Ryan J. Tibshirani:
Trend Filtering on Graphs. J. Mach. Learn. Res. 17: 105:1-105:41 (2016) - [j40]Seth R. Flaxman, Daniel B. Neill, Alexander J. Smola:
Gaussian Processes for Independence Tests with Non-iid Data in Causal Inference. ACM Trans. Intell. Syst. Technol. 7(2): 22:1-22:23 (2016) - [c174]Suvrit Sra, Adams Wei Yu, Mu Li, Alexander J. Smola:
AdaDelay: Delay Adaptive Distributed Stochastic Optimization. AISTATS 2016: 957-965 - [c173]Manzil Zaheer, Michael L. Wick, Jean-Baptiste Tristan, Alexander J. Smola, Guy L. Steele Jr.:
Exponential Stochastic Cellular Automata for Massively Parallel Inference. AISTATS 2016: 966-975 - [c172]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Stochastic Frank-Wolfe methods for nonconvex optimization. Allerton 2016: 1244-1251 - [c171]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Fast incremental method for smooth nonconvex optimization. CDC 2016: 1971-1977 - [c170]Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, Alexander J. Smola:
Stacked Attention Networks for Image Question Answering. CVPR 2016: 21-29 - [c169]Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Stochastic Variance Reduction for Nonconvex Optimization. ICML 2016: 314-323 - [c168]Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, Eduard H. Hovy:
Hierarchical Attention Networks for Document Classification. HLT-NAACL 2016: 1480-1489 - [c167]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization. NIPS 2016: 1145-1153 - [c166]Kumar Avinava Dubey, Sashank J. Reddi, Sinead A. Williamson, Barnabás Póczos, Alexander J. Smola, Eric P. Xing:
Variance Reduction in Stochastic Gradient Langevin Dynamics. NIPS 2016: 1154-1162 - [c165]Chao-Yuan Wu, Christopher V. Alvino, Alexander J. Smola, Justin Basilico:
Using Navigation to Improve Recommendations in Real-Time. RecSys 2016: 341-348 - [c164]Mu Li, Ziqi Liu, Alexander J. Smola, Yu-Xiang Wang:
DiFacto: Distributed Factorization Machines. WSDM 2016: 377-386 - [c163]Chao-Yuan Wu, Alex Beutel, Amr Ahmed, Alexander J. Smola:
Explaining Reviews and Ratings with PACO: Poisson Additive Co-Clustering. WWW (Companion Volume) 2016: 127-128 - [e2]Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, Rajeev Rastogi:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. ACM 2016, ISBN 978-1-4503-4232-2 [contents] - [i34]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Fast Incremental Method for Nonconvex Optimization. CoRR abs/1603.06159 (2016) - [i33]Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Stochastic Variance Reduction for Nonconvex Optimization. CoRR abs/1603.06160 (2016) - [i32]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization. CoRR abs/1605.06900 (2016) - [i31]