default search action
Tobias Scheffer
Person information
- affiliation: University of Potsdam, Germany
- affiliation (former): Max Planck Institute for Informatics, Saarbrücken, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j25]Paul Prasse, David R. Reich, Silvia Makowski, Tobias Scheffer, Lena A. Jäger:
Improving cognitive-state analysis from eye gaze with synthetic eye-movement data. Comput. Graph. 119: 103901 (2024) - [c88]Shuwen Deng, Paul Prasse, David R. Reich, Tobias Scheffer, Lena A. Jäger:
Fine-Tuning Pre-Trained Language Models with Gaze Supervision. ACL (Short Papers) 2024: 217-224 - [c87]Pedro Alonso Campana, Paul Prasse, Tobias Scheffer:
Predicting Dose-Response Curves with Deep Neural Networks. ICML 2024 - 2023
- [j24]Shuwen Deng, David R. Reich, Paul Prasse, Patrick Haller, Tobias Scheffer, Lena A. Jäger:
Eyettention: An Attention-based Dual-Sequence Model for Predicting Human Scanpaths during Reading. Proc. ACM Hum. Comput. Interact. 7(ETRA): 1-24 (2023) - [c86]Shuwen Deng, Paul Prasse, David R. Reich, Tobias Scheffer, Lena A. Jäger:
Pre-Trained Language Models Augmented with Synthetic Scanpaths for Natural Language Understanding. EMNLP 2023: 6500-6507 - [c85]Daniel G. Krakowczyk, Paul Prasse, David R. Reich, Sebastian Lapuschkin, Tobias Scheffer, Lena A. Jäger:
Bridging the Gap: Gaze Events as Interpretable Concepts to Explain Deep Neural Sequence Models. ETRA 2023: 3:1-3:8 - [c84]Paul Prasse, David R. Reich, Silvia Makowski, Seoyoung Ahn, Tobias Scheffer, Lena A. Jäger:
SP-EyeGAN: Generating Synthetic Eye Movement Data with Generative Adversarial Networks. ETRA 2023: 18:1-18:9 - [c83]Silvia Makowski, Paul Prasse, Lena Ann Jäger, Tobias Scheffer:
Detection of Drowsiness and Impending Microsleep from Eye Movements. Gaze Meets ML 2023: 142-160 - [c82]Silvia Makowski, Annika Bätz, Paul Prasse, Lena A. Jäger, Tobias Scheffer:
Detection of Alcohol Inebriation from Eye Movements. KES 2023: 2086-2095 - [i13]Shuwen Deng, David R. Reich, Paul Prasse, Patrick Haller, Tobias Scheffer, Lena A. Jäger:
Eyettention: An Attention-based Dual-Sequence Model for Predicting Human Scanpaths during Reading. CoRR abs/2304.10784 (2023) - [i12]Daniel G. Krakowczyk, Paul Prasse, David R. Reich, Sebastian Lapuschkin, Tobias Scheffer, Lena A. Jäger:
Bridging the Gap: Gaze Events as Interpretable Concepts to Explain Deep Neural Sequence Models. CoRR abs/2304.13536 (2023) - [i11]Shuwen Deng, Paul Prasse, David R. Reich, Tobias Scheffer, Lena A. Jäger:
Pre-Trained Language Models Augmented with Synthetic Scanpaths for Natural Language Understanding. CoRR abs/2310.14676 (2023) - 2022
- [j23]Hanna Drimalla, Tobias Scheffer, Niels Landwehr, Irina Baskow, Stefan Roepke, Behnoush Behnia, Isabel Dziobek:
Author Correction: Towards the automatic detection of social biomarkers in autism spectrum disorder: introducing the simulated interaction task (SIT). npj Digit. Medicine 5 (2022) - [c81]Paul Prasse, David R. Reich, Silvia Makowski, Lena A. Jäger, Tobias Scheffer:
Fairness in Oculomotoric Biometric Identification. ETRA 2022: 22:1-22:8 - [c80]Daniel Krakowczyk, David R. Reich, Paul Prasse, Sebastian Lapuschkin, Tobias Scheffer, Lena A. Jäger:
Selection of XAI Methods Matters: Evaluation of Feature Attribution Methods for Oculomotoric Biometric Identification. Gaze Meets ML 2022: 66-97 - [c79]Silvia Makowski, Paul Prasse, Lena A. Jäger, Tobias Scheffer:
Oculomotoric Biometric Identification under the Influence of Alcohol and Fatigue. IJCB 2022: 1-9 - [c78]Shuwen Deng, Paul Prasse, David R. Reich, Sabine Dziemian, Maja Stegenwallner-Schütz, Daniel Krakowczyk, Silvia Makowski, Nicolas Langer, Tobias Scheffer, Lena A. Jäger:
Detection of ADHD Based on Eye Movements During Natural Viewing. ECML/PKDD (6) 2022: 403-418 - [i10]Shuwen Deng, Paul Prasse, David R. Reich, Sabine Dziemian, Maja Stegenwallner-Schütz, Daniel Krakowczyk, Silvia Makowski, Nicolas Langer, Tobias Scheffer, Lena A. Jäger:
Detection of ADHD based on Eye Movements during Natural Viewing. CoRR abs/2207.01377 (2022) - 2021
- [j22]Silvia Makowski, Paul Prasse, David R. Reich, Daniel Krakowczyk, Lena A. Jäger, Tobias Scheffer:
DeepEyedentificationLive: Oculomotoric Biometric Identification and Presentation-Attack Detection Using Deep Neural Networks. IEEE Trans. Biom. Behav. Identity Sci. 3(4): 506-518 (2021) - [c77]Paul Prasse, Jan Brabec, Jan Kohout, Martin Kopp, Lukás Bajer, Tobias Scheffer:
Learning Explainable Representations of Malware Behavior. ECML/PKDD (4) 2021: 53-68 - [i9]Paul Prasse, Jan Brabec, Jan Kohout, Martin Kopp, Lukás Bajer, Tobias Scheffer:
Learning Explainable Representations of Malware Behavior. CoRR abs/2106.12328 (2021) - 2020
- [j21]Hanna Drimalla, Tobias Scheffer, Niels Landwehr, Irina Baskow, Stefan Roepke, Behnoush Behnia, Isabel Dziobek:
Towards the automatic detection of social biomarkers in autism spectrum disorder: introducing the simulated interaction task (SIT). npj Digit. Medicine 3 (2020) - [c76]Silvia Makowski, Lena A. Jäger, Paul Prasse, Tobias Scheffer:
Biometric Identification and Presentation-Attack Detection using Micro- and Macro-Movements of the Eyes. IJCB 2020: 1-10 - [c75]Silvia Makowski, Lena A. Jäger, Lisa Schwetlick, Hans Trukenbrod, Ralf Engbert, Tobias Scheffer:
Discriminative Viewer Identification using Generative Models of Eye Gaze. KES 2020: 1348-1357 - [c74]Paul Prasse, Lena A. Jäger, Silvia Makowski, Moritz Feuerpfeil, Tobias Scheffer:
On the Relationship between Eye Tracking Resolution and Performance of Oculomotoric Biometric Identification. KES 2020: 2088-2097 - [i8]Silvia Makowski, Lena A. Jäger, Lisa Schwetlick, Hans Trukenbrod, Ralf Engbert, Tobias Scheffer:
Discriminative Viewer Identification using Generative Models of Eye Gaze. CoRR abs/2003.11399 (2020)
2010 – 2019
- 2019
- [j20]Paul Prasse, René Knaebel, Lukás Machlica, Tomás Pevný, Tobias Scheffer:
Joint detection of malicious domains and infected clients. Mach. Learn. 108(8-9): 1353-1368 (2019) - [c73]Lena A. Jäger, Silvia Makowski, Paul Prasse, Sascha Liehr, Maximilian Seidler, Tobias Scheffer:
Deep Eyedentification: Biometric Identification Using Micro-movements of the Eye. ECML/PKDD (2) 2019: 299-314 - [i7]Paul Prasse, René Knaebel, Lukás Machlica, Tomás Pevný, Tobias Scheffer:
Joint Detection of Malicious Domains and Infected Clients. CoRR abs/1906.09084 (2019) - [i6]Lena A. Jäger, Silvia Makowski, Paul Prasse, Sascha Liehr, Maximilian Seidler, Tobias Scheffer:
Deep Eyedentification: Biometric Identification using Micro-Movements of the Eye. CoRR abs/1906.11889 (2019) - 2018
- [c72]Hanna Drimalla, Niels Landwehr, Irina Baskow, Behnoush Behnia, Stefan Roepke, Isabel Dziobek, Tobias Scheffer:
Detecting Autism by Analyzing a Simulated Social Interaction. ECML/PKDD (1) 2018: 193-208 - [c71]Silvia Makowski, Lena A. Jäger, Ahmed AbdelWahab, Niels Landwehr, Tobias Scheffer:
A Discriminative Model for Identifying Readers and Assessing Text Comprehension from Eye Movements. ECML/PKDD (1) 2018: 209-225 - [i5]Silvia Makowski, Lena A. Jäger, Ahmed AbdelWahab, Niels Landwehr, Tobias Scheffer:
A Discriminative Model for Identifying Readers and Assessing Text Comprehension from Eye Movements. CoRR abs/1809.08031 (2018) - 2017
- [j19]Matthias Bussas, Christoph Sawade, Nicolas Kühn, Tobias Scheffer, Niels Landwehr:
Varying-coefficient models for geospatial transfer learning. Mach. Learn. 106(9-10): 1419-1440 (2017) - [c70]Paul Prasse, Lukás Machlica, Tomás Pevný, Jirí Havelka, Tobias Scheffer:
Malware Detection by Analysing Encrypted Network Traffic with Neural Networks. ECML/PKDD (2) 2017: 73-88 - [c69]Paul Prasse, Lukás Machlica, Tomás Pevný, Jirí Havelka, Tobias Scheffer:
Malware Detection by Analysing Network Traffic with Neural Networks. IEEE Symposium on Security and Privacy Workshops 2017: 205-210 - 2016
- [j18]Uwe Dick, Tobias Scheffer:
Learning to control a structured-prediction decoder for detection of HTTP-layer DDoS attackers. Mach. Learn. 104(2-3): 385-410 (2016) - [c68]Oleksandr Zadorozhnyi, Gunthard Benecke, Stephan Mandt, Tobias Scheffer, Marius Kloft:
Huber-Norm Regularization for Linear Prediction Models. ECML/PKDD (1) 2016: 714-730 - 2015
- [j17]Paul Prasse, Christoph Sawade, Niels Landwehr, Tobias Scheffer:
Learning to identify concise regular expressions that describe email campaigns. J. Mach. Learn. Res. 16: 3687-3720 (2015) - [c67]Michael Großhans, Tobias Scheffer:
Solving Prediction Games with Parallel Batch Gradient Descent. ECML/PKDD (1) 2015: 152-167 - [i4]Matthias Bussas, Christoph Sawade, Tobias Scheffer, Niels Landwehr:
Varying-coefficient models with isotropic Gaussian process priors. CoRR abs/1508.07192 (2015) - 2014
- [c66]Niels Landwehr, Sebastian Arzt, Tobias Scheffer, Reinhold Kliegl:
A Model of Individual Differences in Gaze Control During Reading. EMNLP 2014: 1810-1815 - [c65]Michael Großhans, Christoph Sawade, Tobias Scheffer, Niels Landwehr:
Joint Prediction of Topics in a URL Hierarchy. ECML/PKDD (1) 2014: 514-529 - 2013
- [j16]Christoph Sawade, Steffen Bickel, Timo von Oertzen, Tobias Scheffer, Niels Landwehr:
Active evaluation of ranking functions based on graded relevance. Mach. Learn. 92(1): 41-64 (2013) - [c64]Alexander Hewer, Joachim Weickert, Henning Seibert, Tobias Scheffer, Stefan Diebels:
Lagrangian Strain Tensor Computation with Higher Order Variational Models. BMVC 2013 - [c63]Michael Großhans, Christoph Sawade, Michael Brückner, Tobias Scheffer:
Bayesian Games for Adversarial Regression Problems. ICML (3) 2013: 55-63 - [c62]Christoph Sawade, Steffen Bickel, Timo von Oertzen, Tobias Scheffer, Niels Landwehr:
Active Evaluation of Ranking Functions Based on Graded Relevance (Extended Abstract). IJCAI 2013: 3072-3076 - 2012
- [j15]Michael Brückner, Christian Kanzow, Tobias Scheffer:
Static prediction games for adversarial learning problems. J. Mach. Learn. Res. 13: 2617-2654 (2012) - [c61]Peter Haider, Tobias Scheffer:
Finding Botnets Using Minimal Graph Clusterings. ICML 2012 - [c60]Paul Prasse, Christoph Sawade, Niels Landwehr, Tobias Scheffer:
Learning to Identify Regular Expressions that Describe Email Campaigns. ICML 2012 - [c59]Christoph Sawade, Niels Landwehr, Tobias Scheffer:
Active Comparison of Prediction Models. NIPS 2012: 1763-1771 - [c58]Christoph Sawade, Steffen Bickel, Timo von Oertzen, Tobias Scheffer, Niels Landwehr:
Active Evaluation of Ranking Functions Based on Graded Relevance. ECML/PKDD (2) 2012: 676-691 - [i3]Paul Prasse, Christoph Sawade, Niels Landwehr, Tobias Scheffer:
Learning to Identify Regular Expressions that Describe Email Campaigns. CoRR abs/1206.4637 (2012) - [i2]Peter Haider, Tobias Scheffer:
Finding Botnets Using Minimal Graph Clusterings. CoRR abs/1206.4675 (2012) - 2011
- [c57]Michael Brückner, Tobias Scheffer:
Stackelberg games for adversarial prediction problems. KDD 2011: 547-555 - [e5]Lise Getoor, Tobias Scheffer:
Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011. Omnipress 2011 [contents] - 2010
- [c56]Christoph Sawade, Niels Landwehr, Steffen Bickel, Tobias Scheffer:
Active Risk Estimation. ICML 2010: 951-958 - [c55]Uwe Dick, Peter Haider, Thomas Vanck, Michael Brückner, Tobias Scheffer:
Throttling Poisson Processes. NIPS 2010: 505-513 - [c54]Christoph Sawade, Niels Landwehr, Tobias Scheffer:
Active Estimation of F-Measures. NIPS 2010: 2083-2091
2000 – 2009
- 2009
- [j14]Szymon Jaroszewicz, Tobias Scheffer, Dan A. Simovici:
Scalable pattern mining with Bayesian networks as background knowledge. Data Min. Knowl. Discov. 18(1): 56-100 (2009) - [j13]Steffen Bickel, Michael Brückner, Tobias Scheffer:
Discriminative Learning Under Covariate Shift. J. Mach. Learn. Res. 10: 2137-2155 (2009) - [c53]Peter Haider, Tobias Scheffer:
Bayesian clustering for email campaign detection. ICML 2009: 385-392 - [c52]Michael Brückner, Tobias Scheffer:
Nash Equilibria of Static Prediction Games. NIPS 2009: 171-179 - [c51]Laura Dietz, Valentin Dallmeier, Andreas Zeller, Tobias Scheffer:
Localizing Bugs in Program Executions with Graphical Models. NIPS 2009: 468-476 - [r1]Tobias Scheffer:
Semi-Supervised Learning. Encyclopedia of Data Warehousing and Mining 2009: 1787-1793 - 2008
- [j12]Szymon Jaroszewicz, Lenka Ivantysynova, Tobias Scheffer:
Schema matching on streams with accuracy guarantees. Intell. Data Anal. 12(3): 253-270 (2008) - [c50]Steffen Bickel, Jasmina Bogojeska, Thomas Lengauer, Tobias Scheffer:
Multi-task learning for HIV therapy screening. ICML 2008: 56-63 - [c49]Uwe Dick, Peter Haider, Tobias Scheffer:
Learning from incomplete data with infinite imputations. ICML 2008: 232-239 - [c48]Steffen Bickel, Christoph Sawade, Tobias Scheffer:
Transfer Learning by Distribution Matching for Targeted Advertising. NIPS 2008: 145-152 - [c47]Thoralf Klein, Ulf Brefeld, Tobias Scheffer:
Exact and Approximate Inference for Annotating Graphs with Structural SVMs. ECML/PKDD (1) 2008: 611-623 - 2007
- [c46]Steffen Bickel, Michael Brückner, Tobias Scheffer:
Discriminative learning for differing training and test distributions. ICML 2007: 81-88 - [c45]Laura Dietz, Steffen Bickel, Tobias Scheffer:
Unsupervised prediction of citation influences. ICML 2007: 233-240 - [c44]Peter Haider, Ulf Brefeld, Tobias Scheffer:
Supervised clustering of streaming data for email batch detection. ICML 2007: 345-352 - [c43]Alexander Zien, Ulf Brefeld, Tobias Scheffer:
Transductive support vector machines for structured variables. ICML 2007: 1183-1190 - [c42]David S. Vogel, Ognian Asparouhov, Tobias Scheffer:
Scalable look-ahead linear regression trees. KDD 2007: 757-764 - [c41]Ulf Brefeld, Thoralf Klein, Tobias Scheffer:
Support Vector Machines for Collective Inference. MLG 2007 - 2006
- [c40]Ulf Brefeld, Thomas Gärtner, Tobias Scheffer, Stefan Wrobel:
Efficient co-regularised least squares regression. ICML 2006: 137-144 - [c39]Ulf Brefeld, Tobias Scheffer:
Semi-supervised learning for structured output variables. ICML 2006: 145-152 - [c38]Steffen Bickel, Tobias Scheffer:
Dirichlet-Enhanced Spam Filtering based on Biased Samples. NIPS 2006: 161-168 - [c37]Michael Brückner, Peter Haider, Tobias Scheffer:
Highly Scalable Discriminative Spam Filtering. TREC 2006 - [e4]Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou:
Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings. Lecture Notes in Computer Science 4212, Springer 2006, ISBN 3-540-45375-X [contents] - [e3]Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou:
Knowledge Discovery in Databases: PKDD 2006, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18-22, 2006, Proceedings. Lecture Notes in Computer Science 4213, Springer 2006, ISBN 3-540-45374-1 [contents] - 2005
- [j11]Jörg Hakenberg, Steffen Bickel, Conrad Plake, Ulf Brefeld, Hagen Zahn, Lukas Faulstich, Ulf Leser, Tobias Scheffer:
Systematic feature evaluation for gene name recognition. BMC Bioinform. 6(S-1) (2005) - [j10]Tobias Scheffer:
Finding association rules that trade support optimally against confidence. Intell. Data Anal. 9(4): 381-395 (2005) - [j9]David S. Vogel, Steffen Bickel, Peter Haider, Rolf Schimpfky, Peter Siemen, Steve Bridges, Tobias Scheffer:
Classifying search engine queries using the web as background knowledge. SIGKDD Explor. 7(2): 117-122 (2005) - [c36]Steffen Bickel, Tobias Scheffer:
Estimation of Mixture Models Using Co-EM. ECML 2005: 35-46 - [c35]Ulf Brefeld, Christoph Büscher, Tobias Scheffer:
Multi-view Discriminative Sequential Learning. ECML 2005: 60-71 - [c34]Isabel Drost, Tobias Scheffer:
Thwarting the Nigritude Ultramarine: Learning to Identify Link Spam. ECML 2005: 96-107 - [c33]Steffen Bickel, Peter Haider, Tobias Scheffer:
Learning to Complete Sentences. ECML 2005: 497-504 - [c32]Isabel Drost, Steffen Bickel, Tobias Scheffer:
Discovering Communities in Linked Data by Multi-view Clustering. GfKl 2005: 342-349 - [c31]Szymon Jaroszewicz, Tobias Scheffer:
Fast discovery of unexpected patterns in data, relative to a Bayesian network. KDD 2005: 118-127 - [c30]Ulf Brefeld, Christoph Büscher, Tobias Scheffer:
Multi-View Hidden Markov Perceptrons. LWA 2005: 134-138 - [c29]Steffen Bickel, Peter Haider, Tobias Scheffer:
Predicting Sentences using N-Gram Language Models. HLT/EMNLP 2005: 193-200 - [e2]Achim G. Hoffmann, Hiroshi Motoda, Tobias Scheffer:
Discovery Science, 8th International Conference, DS 2005, Singapore, October 8-11, 2005, Proceedings. Lecture Notes in Computer Science 3735, Springer 2005, ISBN 3-540-29230-6 [contents] - [i1]Tobias Scheffer:
Multi-View Learning and Link Farm Discovery. Probabilistic, Logical and Relational Learning 2005 - 2004
- [j8]Tobias Scheffer:
Email answering assistance by semi-supervised text classification. Intell. Data Anal. 8(5): 481-493 (2004) - [j7]Mark-A. Krogel, Tobias Scheffer:
Multi-Relational Learning, Text Mining, and Semi-Supervised Learning for Functional Genomics. Mach. Learn. 57(1-2): 61-81 (2004) - [c28]Steffen Bickel, Tobias Scheffer:
Learning from Message Pairs for Automatic Email Answering. ECML 2004: 87-98 - [c27]Steffen Bickel, Tobias Scheffer:
Multi-View Clustering. ICDM 2004: 19-26 - [c26]Ulf Brefeld, Tobias Scheffer:
Co-EM support vector learning. ICML 2004 - [c25]Tobias Scheffer:
Workshop der GI-Fachgruppe "Maschinelles Lernen" (FGML). LWA 2004: 110 - [c24]Ulf Brefeld, Steffen Bickel, Tobias Scheffer:
Multi-View Lernen. LWA 2004: 131 - [c23]Isabel Drost, Tobias Scheffer:
Efficiency and Stability of Clustering Algorithms for Linked Data. LWA 2004: 146 - [c22]Korinna Grabski, Tobias Scheffer:
Sentence completion. SIGIR 2004: 433-439 - [e1]Andreas Abecker, Steffen Bickel, Ulf Brefeld, Isabel Drost, Nicola Henze, Olaf Herden, Mirjam Minor, Tobias Scheffer, Ljiljana Stojanovic, Stephan Weibelzahl:
LWA 2004: Lernen - Wissensentdeckung - Adaptivität, Berlin, 4. - 6. Oktober 2004, Workshopwoche der GI-Fachgruppen/Arbeitskreise (1) Fachgruppe Adaptivität und Benutzermodellierung in Interaktiven Softwaresystemen (ABIS 2004), (2) Arbeitskreis Knowledge Discovery (AKKD 2004), (3) Fachgruppe Maschinelles Lernen (FGML 2004), (4) Fachgruppe Wissens- und Erfahrungsmanagement (FGWM 2004). Humbold-Universität Berlin 2004 [contents] - 2003
- [c21]Mark-A. Krogel, Tobias Scheffer:
Effectiveness of Information Extraction, Multi-Relational, and Semi-Supervised Learning for Predicting Functional Properties of Genes. ICDM 2003: 569-572 - [c20]Michael Kockelkorn, Andreas Lüneburg, Tobias Scheffer:
Learning to Answer Emails. IDA 2003: 25-35 - [c19]Mark-A. Krogel, Tobias Scheffer:
Effectiveness of information extraction, multi-relational, and multi-view learning for prediction gene deletion experiments. BIOKDD 2003: 10-16 - [c18]Michael Kockelkorn, Andreas Lüneburg, Tobias Scheffer:
Using Transduction and Multi-view Learning to Answer Emails. PKDD 2003: 266-277 - 2002
- [j6]Tobias Scheffer, Stefan Wrobel:
Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling. J. Mach. Learn. Res. 3: 833-862 (2002) - [j5]Tobias Scheffer, Stefan Wrobel, Borislav Popov, Damyan Ognianov, Christian Decomain, Susanne Hoche:
Lerning Hidden Markov Models for Information Extraction Actively from Partially Labeled Text. Künstliche Intell. 16(2): 17-22 (2002) - [j4]Mark-A. Krogel, Marcus Denecke, Marco Landwehr, Tobias Scheffer:
Combining Data and Text Mining Techniques for Yeast Gene Regulation Prediction: A Case Study. SIGKDD Explor. 4(2): 104-105 (2002) - [c17]Tobias Scheffer, Stefan Wrobel:
A Scalable Constant-Memory Sampling Algorithm for Pattern Discovery in Large Databases. PKDD 2002: 397-409 - 2001
- [c16]Hans Gründel, Tino Naphtali, Christian Wiech, Jan-Marian Gluba, Maiken Rohdenburg, Tobias Scheffer:
Clipping and Analyzing News Using Machine Learning Techniques. Discovery Science 2001: 87-99 - [c15]Tobias Scheffer, Christian Decomain, Stefan Wrobel:
Mining the Web with Active Hidden Markov Models. ICDM 2001: 645-646 - [c14]Tobias Scheffer, Stefan Wrobel:
Incremental Maximization of Non-Instance-Averaging Utility Functions with Applications to Knowledge Discovery Problems. ICML 2001: 481-488 - [c13]Tobias Scheffer, Christian Decomain, Stefan Wrobel:
Active Hidden Markov Models for Information Extraction. IDA 2001: 309-318 - [c12]Tobias Scheffer:
Finding Association Rules That Trade Support Optimally against Confidence. PKDD 2001: 424-435 - 2000
- [c11]Tobias Scheffer:
Average-Case Analysis of Classification Algorithms for Boolean Functions and Decision Trees. ALT 2000: 194-208 - [c10]Tobias Scheffer:
Nonparametric Regularization of Decision Trees. ECML 2000: 344-356 - [c9]Tobias Scheffer:
Predicting the Generalization Performance of Cross Validatory Model Selection Criteria. ICML 2000: 831-838 - [c8]Tobias Scheffer, Stefan Wrobel:
A sequential sampling algorithm for a general class of utility criteria. KDD 2000: 330-334
1990 – 1999
- 1999
- [b1]Tobias Scheffer:
Error estimation and model selection. Technical University of Berlin, Germany, DISKI 225, Infix 1999, ISBN 978-3-89601-225-8, pp. I-XI, 1-126 - [j3]Tobias Scheffer:
Error Estimation and Model Selection. Künstliche Intell. 13(3): 46-48 (1999) - [j2]Tobias Scheffer:
International Conference on Machine Learning (ICML-99). Künstliche Intell. 13(4): 68 (1999) - [c7]Andrew R. Mitchell, Tobias Scheffer, Arun Sharma, Frank Stephan:
The VC-Dimension of Subclasses of Pattern. ALT 1999: 93-105 - [c6]Tobias Scheffer, Thorsten Joachims:
Expected Error Analysis for Model Selection. ICML 1999: 361-370 - 1998
- [c5]Tobias Scheffer, Thorsten Joachims:
Estimating the Expected Error of Empirical Minimizers for Model Selection. AAAI/IAAI 1998: 1200 - 1997
- [c4]Tobias Scheffer, Russell Greiner, Christian Darken:
Why Experimentation can be better than "Perfect Guidance". ICML 1997: 331-339 - [c3]Tobias Scheffer, Ralf Herbrich:
Unbiased Assesment of Learning Algorithms. IJCAI (2) 1997: 798-803 - 1996
- [j1]Marion Finke, Günter Hommel, Tobias Scheffer, Fritz Wysotzki:
Aerial Robotics in Computer Science Education. Comput. Sci. Educ. 7(2): 239-246 (1996) - [c2]Tobias Scheffer, Ralf Herbrich, Fritz Wysotzki:
Efficient Theta-Subsumption Based on Graph Algorithms. Inductive Logic Programming Workshop 1996: 212-228 - 1995
- [c1]Tobias Scheffer:
A Generic Algorithm for Learning Rules with Hierarchical Exceptions. SBIA 1995: 181-190
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-12 22:58 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint