


default search action
Nikos Vlassis
Person information
- affiliation (2014-2017, since 2022): Adobe Research, San Jose, CA, USA
- affiliation (2017-2022): Netflix Research, Los Gatos, CA, USA
- affiliation (2010-2014): University of Luxembourg, Centre for Systems Biomedicine, Luxembourg
- affiliation (2007-2010): Technical University of Crete, Greece
- affiliation (2001-2007): University of Amsterdam, The Netherlands
- affiliation (PhD 1998): National Technical University of Athens, Greece
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c63]Shreyas Chaudhari, David Arbour, Georgios Theocharous, Nikos Vlassis:
Distributional Off-Policy Evaluation for Slate Recommendations. AAAI 2024: 8265-8273 - 2023
- [i19]Ashish Singh, Prateek Agarwal, Zixuan Huang, Arpita Singh, Tong Yu, Sungchul Kim, Victor S. Bursztyn, Nikos Vlassis, Ryan A. Rossi:
FigCaps-HF: A Figure-to-Caption Generative Framework and Benchmark with Human Feedback. CoRR abs/2307.10867 (2023) - [i18]Shreyas Chaudhari, David Arbour, Georgios Theocharous, Nikos Vlassis:
Distributional Off-Policy Evaluation for Slate Recommendations. CoRR abs/2308.14165 (2023) - 2022
- [i17]Dawen Liang, Nikos Vlassis:
Local Policy Improvement for Recommender Systems. CoRR abs/2212.11431 (2022) - 2021
- [c62]Nikos Vlassis, Ashok Chandrashekar, Fernando Amat Gil, Nathan Kallus:
Control Variates for Slate Off-Policy Evaluation. NeurIPS 2021: 3667-3679 - [i16]Nikos Vlassis, Fernando Amat Gil, Ashok Chandrashekar:
Off-Policy Evaluation of Slate Policies under Bayes Risk. CoRR abs/2101.02553 (2021) - [i15]Nikos Vlassis, Ashok Chandrashekar, Fernando Amat Gil, Nathan Kallus:
Control Variates for Slate Off-Policy Evaluation. CoRR abs/2106.07914 (2021)
2010 – 2019
- 2019
- [c61]Ershad Banijamali, Yasin Abbasi-Yadkori, Mohammad Ghavamzadeh, Nikos Vlassis:
Optimizing over a Restricted Policy Class in MDPs. AISTATS 2019: 3042-3050 - [c60]Aurélien Bibaut, Ivana Malenica, Nikos Vlassis, Mark J. van der Laan:
More Efficient Off-Policy Evaluation through Regularized Targeted Learning. ICML 2019: 654-663 - [c59]Nikos Vlassis, Aurélien Bibaut, Maria Dimakopoulou, Tony Jebara:
On the Design of Estimators for Bandit Off-Policy Evaluation. ICML 2019: 6468-6476 - [c58]Maria Dimakopoulou, Nikos Vlassis, Tony Jebara:
Marginal Posterior Sampling for Slate Bandits. IJCAI 2019: 2223-2229 - [i14]Aurélien F. Bibaut, Ivana Malenica, Nikos Vlassis, Mark J. van der Laan:
More Efficient Off-Policy Evaluation through Regularized Targeted Learning. CoRR abs/1912.06292 (2019) - 2018
- [c57]Frits de Nijs, Georgios Theocharous, Nikos Vlassis, Mathijs Michiel de Weerdt, Matthijs T. J. Spaan:
Capacity-aware Sequential Recommendations. AAMAS 2018: 416-424 - [c56]Georgios Theocharous, Zheng Wen, Yasin Abbasi, Nikos Vlassis:
Scalar Posterior Sampling with Applications. NeurIPS 2018: 7696-7704 - [i13]Ershad Banijamali, Yasin Abbasi-Yadkori, Mohammad Ghavamzadeh, Nikos Vlassis:
Optimizing over a Restricted Policy Class in Markov Decision Processes. CoRR abs/1802.09646 (2018) - 2017
- [c55]Dimitris Achlioptas, Fotis Iliopoulos, Nikos Vlassis:
Stochastic Control via Entropy Compression. ICALP 2017: 83:1-83:13 - [c54]Georgios Theocharous, Nikos Vlassis, Zheng Wen:
An Interactive Points of Interest Guidance System. IUI Companion 2017: 49-52 - [c53]Shi Zong, Branislav Kveton, Shlomo Berkovsky
, Azin Ashkan, Nikos Vlassis, Zheng Wen:
Does Weather Matter?: Causal Analysis of TV Logs. WWW (Companion Volume) 2017: 883-884 - [i12]Shi Zong, Branislav Kveton, Shlomo Berkovsky, Azin Ashkan, Nikos Vlassis, Zheng Wen:
Does Weather Matter? Causal Analysis of TV Logs. CoRR abs/1701.08716 (2017) - [i11]Georgios Theocharous, Zheng Wen, Yasin Abbasi-Yadkori, Nikos Vlassis:
Posterior Sampling for Large Scale Reinforcement Learning. CoRR abs/1711.07979 (2017) - 2016
- [c52]Nicolò Colombo, Nikos Vlassis:
Tensor Decomposition via Joint Matrix Schur Decomposition. ICML 2016: 2820-2828 - [c51]Sheng Li, Nikos Vlassis, Jaya Kawale, Yun Fu:
Matching via Dimensionality Reduction for Estimation of Treatment Effects in Digital Marketing Campaigns. IJCAI 2016: 3768-3774 - [c50]Suvash Sedhain, Hung Bui, Jaya Kawale, Nikos Vlassis, Branislav Kveton, Aditya Krishna Menon, Trung Bui, Scott Sanner:
Practical Linear Models for Large-Scale One-Class Collaborative Filtering. IJCAI 2016: 3854-3860 - [c49]Florian Bernard, Nikos Vlassis, Peter Gemmar, Andreas Husch
, Johan Thunberg
, Jorge M. Gonçalves
, Frank Hertel:
Fast correspondences for statistical shape models of brain structures. Image Processing 2016: 97840R - [c48]Nicolò Colombo, Nikos Vlassis:
A posteriori error bounds for joint matrix decomposition problems. NIPS 2016: 4943-4950 - [i10]Nicolò Colombo, Nikos Vlassis:
Approximate Joint Matrix Triangularization. CoRR abs/1607.00514 (2016) - [i9]Dimitris Achlioptas, Fotis Iliopoulos, Nikos Vlassis:
Stochastic Control via Entropy Compression. CoRR abs/1607.06494 (2016) - [i8]Ehsan Amid, Nikos Vlassis, Manfred K. Warmuth:
t-Exponential Triplet Embedding. CoRR abs/1611.09957 (2016) - 2015
- [j29]Nicolò Colombo, Nikos Vlassis:
FastMotif: spectral sequence motif discovery. Bioinform. 31(16): 2623-2631 (2015) - [c47]Luis Salamanca
, Nikos Vlassis, Nico Diederich
, Florian Bernard, Alexander Skupin:
Improved Parkinson's Disease Classification from Diffusion MRI Data by Fisher Vector Descriptors. MICCAI (2) 2015: 119-126 - [c46]Nicolò Colombo, Nikos Vlassis:
Stable Spectral Learning Based on Schur Decomposition. UAI 2015: 220-227 - 2014
- [j28]Ines Thiele
, Nikos Vlassis, Ronan M. T. Fleming
:
fastGapFill: efficient gap filling in metabolic networks. Bioinform. 30(17): 2529-2531 (2014) - [j27]Nikos Vlassis, Maria Pires Pacheco
, Thomas Sauter
:
Fast Reconstruction of Compact Context-Specific Metabolic Network Models. PLoS Comput. Biol. 10(1) (2014) - [j26]Nikos Vlassis, Raphaël M. Jungers:
Polytopic uncertainty for linear systems: New and old complexity results. Syst. Control. Lett. 67: 9-13 (2014) - [i7]Nicolò Colombo, Nikos Vlassis:
Spectral Sequence Motif Discovery. CoRR abs/1407.6125 (2014) - 2013
- [i6]Nikos Vlassis, Maria Pires Pacheco, Thomas Sauter:
Fast Reconstruction of Compact Context-Specific Metabolic Network Models. CoRR abs/1304.7992 (2013) - [i5]Nikos Vlassis, Raphaël M. Jungers:
Polytopic uncertainty for linear systems: New and old complexity results. CoRR abs/1310.1930 (2013) - 2012
- [j25]Nikos Vlassis, Michael L. Littman, David Barber:
On the Computational Complexity of Stochastic Controller Optimization in POMDPs. ACM Trans. Comput. Theory 4(4): 12:1-12:8 (2012) - [p1]Nikos Vlassis, Mohammad Ghavamzadeh, Shie Mannor
, Pascal Poupart:
Bayesian Reinforcement Learning. Reinforcement Learning 2012: 359-386 - [i4]Nikos Vlassis:
NP-hardness of polytope M-matrix testing and related problems. CoRR abs/1206.2059 (2012) - 2011
- [i3]Nikos Vlassis, Michael L. Littman, David Barber:
On the computational complexity of stochastic controller optimization in POMDPs. CoRR abs/1107.3090 (2011) - [i2]Matthijs T. J. Spaan, Nikos Vlassis:
Perseus: Randomized Point-based Value Iteration for POMDPs. CoRR abs/1109.2145 (2011) - [i1]Frans A. Oliehoek, Matthijs T. J. Spaan, Nikos Vlassis:
Optimal and Approximate Q-value Functions for Decentralized POMDPs. CoRR abs/1111.0062 (2011)
2000 – 2009
- 2009
- [b1]Nikos Vlassis:
A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers 2009, ISBN 978-3-031-00415-5 - [j24]Nikos Vlassis, Marc Toussaint, Georgios Kontes
, Savas Piperidis
:
Learning model-free robot control by a Monte Carlo EM algorithm. Auton. Robots 27(2): 123-130 (2009) - [c45]Nikos Vlassis, Marc Toussaint:
Model-free reinforcement learning as mixture learning. ICML 2009: 1081-1088 - 2008
- [j23]Frans A. Oliehoek, Julian F. P. Kooij, Nikos Vlassis:
The Cross-Entropy Method for Policy Search in Decentralized POMDPs. Informatica (Slovenia) 32(4): 341-357 (2008) - [j22]Frans A. Oliehoek, Matthijs T. J. Spaan, Nikos Vlassis:
Optimal and Approximate Q-value Functions for Decentralized POMDPs. J. Artif. Intell. Res. 32: 289-353 (2008) - [c44]Matthijs T. J. Spaan, Frans A. Oliehoek, Nikos Vlassis:
Multiagent Planning Under Uncertainty with Stochastic Communication Delays. ICAPS 2008: 338-345 - [c43]Frans A. Oliehoek, Matthijs T. J. Spaan, Shimon Whiteson, Nikos Vlassis:
Exploiting locality of interaction in factored Dec-POMDPs. AAMAS (1) 2008: 517-524 - [c42]Pascal Poupart, Nikos Vlassis:
Model-based Bayesian Reinforcement Learning in Partially Observable Domains. ISAIM 2008 - [c41]Lior Kuyer, Shimon Whiteson, Bram Bakker, Nikos Vlassis:
Multiagent Reinforcement Learning for Urban Traffic Control Using Coordination Graphs. ECML/PKDD (1) 2008: 656-671 - 2007
- [j21]Aristeidis Diplaros, Nikos Vlassis, Theo Gevers:
A Spatially Constrained Generative Model and an EM Algorithm for Image Segmentation. IEEE Trans. Neural Networks 18(3): 798-808 (2007) - [c40]Frans A. Oliehoek, Nikos Vlassis:
Q-value Heuristics for Approximate Solutions of Dec-POMDPs. AAAI Spring Symposium: Game Theoretic and Decision Theoretic Agents 2007: 31-37 - [c39]Frans A. Oliehoek
, Nikos Vlassis:
Q-value functions for decentralized POMDPs. AAMAS 2007: 220 - [c38]Nikos Vlassis:
Distributed Decision Making for Robot Teams. IDC 2007: 35-40 - [c37]Frans A. Oliehoek
, Julian F. P. Kooij
, Nikos Vlassis:
A Cross-Entropy Approach to Solving Dec-POMDPs. IDC 2007: 145-154 - 2006
- [j20]Jakob J. Verbeek, Jan Nunnink, Nikos Vlassis:
Accelerated EM-based clustering of large data sets. Data Min. Knowl. Discov. 13(3): 291-307 (2006) - [j19]Jelle R. Kok, Nikos Vlassis:
Collaborative Multiagent Reinforcement Learning by Payoff Propagation. J. Mach. Learn. Res. 7: 1789-1828 (2006) - [j18]Josep M. Porta, Nikos Vlassis, Matthijs T. J. Spaan, Pascal Poupart:
Point-Based Value Iteration for Continuous POMDPs. J. Mach. Learn. Res. 7: 2329-2367 (2006) - [j17]Jakob J. Verbeek, Nikos Vlassis:
Gaussian fields for semi-supervised regression and correspondence learning. Pattern Recognit. 39(10): 1864-1875 (2006) - [j16]Nikos Vlassis, Geoffrey J. Gordon, Joelle Pineau:
Planning under uncertainty in robotics. Robotics Auton. Syst. 54(11): 885-886 (2006) - [c36]Michael R. James, Ton Wessling, Nikos Vlassis:
Improving Approximate Value Iteration Using Memories and Predictive State Representations. AAAI 2006: 375-380 - [c35]Matthijs T. J. Spaan, Geoffrey J. Gordon, Nikos Vlassis:
Decentralized planning under uncertainty for teams of communicating agents. AAMAS 2006: 249-256 - [c34]Frans A. Oliehoek, Edwin D. de Jong, Nikos Vlassis:
The parallel Nash Memory for asymmetric games. GECCO 2006: 337-344 - [c33]Pascal Poupart, Nikos Vlassis, Jesse Hoey, Kevin Regan:
An analytic solution to discrete Bayesian reinforcement learning. ICML 2006: 697-704 - [c32]Kenichi Kurihara, Max Welling, Nikos Vlassis:
Accelerated Variational Dirichlet Process Mixtures. NIPS 2006: 761-768 - 2005
- [j15]Jakob J. Verbeek, Nikos Vlassis, Ben J. A. Kröse:
Self-organizing mixture models. Neurocomputing 63: 99-123 (2005) - [j14]Matthijs T. J. Spaan, Nikos Vlassis:
Perseus: Randomized Point-based Value Iteration for POMDPs. J. Artif. Intell. Res. 24: 195-220 (2005) - [j13]Jelle R. Kok, Matthijs T. J. Spaan, Nikos Vlassis:
Non-communicative multi-robot coordination in dynamic environments. Robotics Auton. Syst. 50(2-3): 99-114 (2005) - [c31]Frans A. Oliehoek, Nikos Vlassis, Edwin D. de Jong:
Coevolutionary Nash in poker games. BNAIC 2005: 188-193 - [c30]Jelle R. Kok, Nikos Vlassis:
Using the Max-Plus Algorithm for Multiagent Decision Making in Coordination Graphs. BNAIC 2005: 359-360 - [c29]Josep M. Porta, Matthijs T. J. Spaan, Nikos Vlassis:
Robot Planning in Partially Observable Continuous Domains. BNAIC 2005: 375-376 - [c28]Jelle R. Kok, Pieter Jan't Hoen, Bram Bakker, Nikos Vlassis:
Utile Coordination: Learning Interdependencies Among Cooperative Agents. CIG 2005 - [c27]Matthijs T. J. Spaan, Nikos Vlassis:
Planning with Continuous Actions in Partially Observable Environments. ICRA 2005: 3458-3463 - [c26]Nikos Vlassis, Yiannis Sfakianakis, Wojtek Kowalczyk:
Gossip-Based Greedy Gaussian Mixture Learning. Panhellenic Conference on Informatics 2005: 349-359 - [c25]Jelle R. Kok, Nikos Vlassis:
Using the Max-Plus Algorithm for Multiagent Decision Making in Coordination Graphs. RoboCup 2005: 1-12 - [c24]Josep M. Porta, Matthijs T. J. Spaan, Nikos Vlassis:
Robot Planning in Partially Observable Continuous Domains. Robotics: Science and Systems 2005: 217-224 - 2004
- [j12]Ben J. A. Kröse, Roland Bunschoten, Stephan ten Hagen, Bas Terwijn, Nikos Vlassis:
Household robots look and learn: environment modeling and localization from an omnidirectional vision system. IEEE Robotics Autom. Mag. 11(4): 45-52 (2004) - [c23]Jelle R. Kok, Nikos Vlassis:
Sparse cooperative Q-learning. ICML 2004 - [c22]Matthijs T. J. Spaan, Nikos Vlassis:
A Point-based POMDP Algorithm for Robot Planning. ICRA 2004: 2399-2404 - [c21]Wojtek Kowalczyk, Nikos Vlassis:
Newscast EM. NIPS 2004: 713-720 - [c20]Nikos Vlassis, Reinoud Elhorst, Jelle R. Kok:
Anytime algorithms for multiagent decision making using coordination graphs. SMC (1) 2004: 953-957 - [c19]Aristeidis Diplaros, Theo Gevers, Nikos Vlassis:
Skin detection using the EM algorithm with spatial constraints. SMC (4) 2004: 3071-3075 - 2003
- [j11]Jakob J. Verbeek, Nikos Vlassis, Ben J. A. Kröse:
Efficient Greedy Learning of Gaussian Mixture Models. Neural Comput. 15(2): 469-485 (2003) - [j10]Aristidis Likas, Nikos Vlassis, Jakob J. Verbeek:
The global k-means clustering algorithm. Pattern Recognit. 36(2): 451-461 (2003) - [c18]Jakob J. Verbeek, Nikos Vlassis, Ben J. A. Kröse:
Self-Organization by Optimizing Free-Energy. ESANN 2003: 125-130 - [c17]Jakob J. Verbeek, Sam T. Roweis, Nikos Vlassis:
Non-linear CCA and PCA by Alignment of Local Models. NIPS 2003: 297-304 - 2002
- [j9]Nikos Vlassis, Yoichi Motomura, Ben J. A. Kröse:
Supervised Dimension Reduction of Intrinsically Low-Dimensional Data. Neural Comput. 14(1): 191-215 (2002) - [j8]Nikos Vlassis, Aristidis Likas:
A Greedy EM Algorithm for Gaussian Mixture Learning. Neural Process. Lett. 15(1): 77-87 (2002) - [j7]Jakob J. Verbeek, Nikos Vlassis, Ben J. A. Kröse:
A k-segments algorithm for finding principal curves. Pattern Recognit. Lett. 23(8): 1009-1017 (2002) - [c16]Jakob J. Verbeek, Nikos Vlassis, Ben J. A. Kröse:
Fast nonlinear dimensionality reduction with topology representing networks. ESANN 2002: 193-198 - [c15]Jakob J. Verbeek, Nikos Vlassis, Ben J. A. Kröse:
Coordinating Principal Component Analyzers. ICANN 2002: 914-919 - [c14]Nikos Vlassis, Bas Terwijn, Ben J. A. Kröse:
Auxiliary Particle Filter Robot Localization from High-Dimensional Sensor Observations. ICRA 2002: 7-12 - [c13]Jelle R. Kok, Remco C. de Boer, Nikos Vlassis, Frans C. A. Groen:
Towards an Optimal Scoring Policy for Simulated Soccer Agents. RoboCup 2002: 296-303 - 2001
- [j6]Hideki Asoh
, Nikos Vlassis, Yoichi Motomura, Futoshi Asano, Isao Hara, Satoru Hayamizu, Katsunobu Itou, Takio Kurita
, Toshihiro Matsui, Roland Bunschoten, Ben J. A. Kröse:
Jijo-2: An Office Robot that Communicates and Learns. IEEE Intell. Syst. 16(5): 46-55 (2001) - [j5]Ben J. A. Kröse, Nikos Vlassis, Roland Bunschoten, Yoichi Motomura:
A probabilistic model for appearance-based robot localization. Image Vis. Comput. 19(6): 381-391 (2001) - [j4]Nikos Vlassis, Yoichi Motomura:
Efficient source adaptivity in independent component analysis. IEEE Trans. Neural Networks 12(3): 559-566 (2001) - [c12]Jakob J. Verbeek, Nikos Vlassis, Ben J. A. Kröse:
A Soft k-Segments Algorithm for Principal Curves. ICANN 2001: 450-456 - [c11]Nikos Vlassis:
Fast Score Function Estimation with Application in ICA. ICANN 2001: 541-546 - [c10]Nikos Vlassis, Roland Bunschoten, Ben J. A. Kröse:
Learning Task-relevant Features from Robot Data. ICRA 2001: 499-504 - [c9]Nikos Vlassis, Yoichi Motomura, Isao Hara, Hideki Asoh:
Edge-based Features from Omnidirectional Images for Robot Localization. ICRA 2001: 1579-1584 - 2000
- [c8]Ben J. A. Kröse, Nikos Vlassis, Roland Bunschoten:
Omnidirectional Vision for Appearance-Based Robot Localization. Sensor Based Intelligent Robots 2000: 39-50 - [c7]Nikos Vlassis, Yoichi Motomura, Ben J. A. Kröse:
Supervised Linear Feature Extraction for Mobile Robot Localization. ICRA 2000: 2979-2984
1990 – 1999
- 1999
- [j3]Nikos A. Vlassis, George K. Papakonstantinou, Panayotis Tsanakas:
Mixture Density Estimation Based on Maximum Likelihood and Sequential Test Statistics. Neural Process. Lett. 9(1): 63-76 (1999) - [j2]Nikos Vlassis, Aristidis Likas:
A kurtosis-based dynamic approach to Gaussian mixture modeling. IEEE Trans. Syst. Man Cybern. Part A 29(4): 393-399 (1999) - [c6]Nikos Vlassis, Ben J. A. Kröse:
Robot environment modeling via principal component regression. IROS 1999: 677-682 - 1998
- [c5]Nikos A. Vlassis, Konstantinos Blekas, George K. Papakonstantinou, Andreas Stafylopatis:
A vector quantization schema for non-stationary signal distributions based on ML estimation of mixture densities. EUSIPCO 1998: 1-4 - [c4]Nikos A. Vlassis, Panayotis Tsanakas:
A Sensory Uncertainty Field Model for Unknown and Non-Stationary Mobile Robot Environments. ICRA 1998: 363-368 - [c3]Nikos A. Vlassis, George K. Papakonstantinou, Panayotis Tsanakas:
Dynamic sensory probabilistic maps for mobile robot localization. IROS 1998: 718-723 - 1997
- [c2]Nikos A. Vlassis, Apostolos Dimopoulos, George K. Papakonstantinou:
The Probabilistic Growing Cell Structures Algorithm. ICANN 1997: 649-654 - 1996
- [j1]George K. Efthivoulidis, Nikos Vlassis, Panayotis Tsanakas, George K. Papakonstantinou:
An experiment for truly parallel logic programming. J. Intell. Robotic Syst. 16(2): 169-184 (1996) - [c1]Nikos A. Vlassis, Nikitas M. Sgouros, G. Efthivoulidis, George K. Papakonstantinou, Panayotis Tsanakas:
Global Path Planning for Autonomous Qualitative Navigation. ICTAI 1996: 354-359
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 22:59 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint