default search action
12th ISBRA 2016: Minsk, Belarus
- Anu G. Bourgeois, Pavel Skums, Xiang Wan, Alex Zelikovsky:
Bioinformatics Research and Applications - 12th International Symposium, ISBRA 2016, Minsk, Belarus, June 5-8, 2016, Proceedings. Lecture Notes in Computer Science 9683, Springer 2016, ISBN 978-3-319-38781-9
Next Generation Sequencing Data Analysis
- Sharma V. Thankachan, Sriram P. Chockalingam, Srinivas Aluru:
An Efficient Algorithm for Finding All Pairs k-Mismatch Maximal Common Substrings. 3-14 - Lu Wang, Dongxiao Zhu, Yan Li, Ming Dong:
Poisson-Markov Mixture Model and Parallel Algorithm for Binning Massive and Heterogenous DNA Sequencing Reads. 15-26 - Paola Bonizzoni, Gianluca Della Vedova, Yuri Pirola, Marco Previtali, Raffaella Rizzi:
FSG: Fast String Graph Construction for De Novo Assembly of Reads Data. 27-39 - Takuya Moriyama, Yuichi Shiraishi, Kenichi Chiba, Rui Yamaguchi, Seiya Imoto, Satoru Miyano:
OVarCall: Bayesian Mutation Calling Method Utilizing Overlapping Paired-End Reads. 40-51 - V. P. Egorova, Halina V. Grushevskaya, N. G. Krylova, I. V. Lipnevich, T. I. Orekhovskaja, Boris G. Shulitski, V. I. Krot:
High-Performance Sensing of DNA Hybridization on Surface of Self-organized MWCNT-Arrays Decorated by Organometallic Complexes. 52-66 - Menglu Li, Angel C. Y. Mak, Ernest T. Lam, Pui-Yan Kwok, Ming Xiao, Kevin Y. Yip, Ting-Fung Chan, Siu-Ming Yiu:
Towards a More Accurate Error Model for BioNano Optical Maps. 67-79 - Serghei Mangul, Harry (Taegyun) Yang, Farhad Hormozdiari, Elizabeth Tseng, Alex Zelikovsky, Eleazar Eskin:
HapIso: An Accurate Method for the Haplotype-Specific Isoforms Reconstruction from Long Single-Molecule Reads. 80-92
Protein-Protein Interactions and Networks
- Ivan V. Anishchenko, Varsha D. Badal, Taras Dauzhenka, Madhurima Das, Alexander V. Tuzikov, Petras J. Kundrotas, Ilya A. Vakser:
Genome-Wide Structural Modeling of Protein-Protein Interactions. 95-105 - Min Li, Xiaopei Chen, Peng Ni, Jianxin Wang, Yi Pan:
Identifying Essential Proteins by Purifying Protein Interaction Networks. 106-116 - Marc Legeay, Béatrice Duval, Jean-Pierre Renou:
Differential Functional Analysis and Change Motifs in Gene Networks to Explore the Role of Anti-sense Transcription. 117-126 - Wei Peng, Wei Lan, Zeng Yu, Jianxin Wang, Yi Pan:
Predicting MicroRNA-Disease Associations by Random Walking on Multiple Networks. 127-135 - Ryan Eshleman, Rahul Singh:
Progression Reconstruction from Unsynchronized Biological Data using Cluster Spanning Trees. 136-147
Protein and RNA Structure
- Emily Flynn, Ileana Streinu:
Consistent Visualization of Multiple Rigid Domain Decompositions of Proteins. 151-162 - Thiago Lipinski-Paes, Michele dos Santos da Silva Tanus, José Fernando Ruggiero Bachega, Osmar Norberto de Souza:
A Multiagent Ab Initio Protein Structure Prediction Tool for Novices and Experts. 163-174 - Letu Qingge, Xiaowen Liu, Farong Zhong, Binhai Zhu:
Filling a Protein Scaffold with a Reference. 175-186
Phylogenetics
- Pawel Górecki, Jaroslaw Paszek, Agnieszka Mykowiecka:
Mean Values of Gene Duplication and Loss Cost Functions. 189-199 - Nina Luhmann, Annelyse Thévenin, Aïda Ouangraoua, Roland Wittler, Cédric Chauve:
The SCJ Small Parsimony Problem for Weighted Gene Adjacencies. 200-210 - Alexey Markin, Oliver Eulenstein:
Path-Difference Median Trees. 211-223 - Min Ye, Gabriela C. Racz, Qijia Jiang, Xiuwei Zhang, Bernard M. E. Moret:
NEMo: An Evolutionary Model with Modularity for PPI Networks. 224-236 - Sergey Aganezov Jr., Max A. Alekseyev:
Multi-genome Scaffold Co-assembly Based on the Analysis of Gene Orders and Genomic Repeats. 237-249
Sequence and Image Analysis
- Andrey V. Zaika, Iakov I. Davydov, Mikhail S. Gelfand:
Selectoscope: A Modern Web-App for Positive Selection Analysis of Genomic Data. 253-257 - Roman Sergeev, Ivan Kavaliou, Andrei E. Gabrielian, Alex Rosenthal, Alexander Tuzikov:
Methods for Genome-Wide Analysis of MDR and XDR Tuberculosis from Belarus. 258-268 - Bonnie Kirkpatrick:
Haplotype Inference for Pedigrees with Few Recombinations. 269-283 - Michal Marczyk:
Improved Detection of 2D Gel Electrophoresis Spots by Using Gaussian Mixture Model. 284-294
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.