default search action
Anup B. Rao
Person information
- affiliation: Adobe Research, San Jose, CA, USA
- affiliation (former): Yale University, New Haven, CT, USA
Other persons with the same name
- Anup Rao 0001 — University of Washington, Seattle, WA, USA (and 2 more)
- Anup Rao 0003 — Cisco, USA (and 1 more)
- Anup Rao 0004 — Georgia Institute of Technology, Collecge of Computing, Atlanta, GA, USA
- Anup Rao 0005 — University of California at Los Angeles, David Geffen School of Medicine, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c45]Junda Wu, Tong Yu, Xiang Chen, Haoliang Wang, Ryan A. Rossi, Sungchul Kim, Anup B. Rao, Julian J. McAuley:
DeCoT: Debiasing Chain-of-Thought for Knowledge-Intensive Tasks in Large Language Models via Causal Intervention. ACL (1) 2024: 14073-14087 - [c44]Yu Xia, Xu Liu, Tong Yu, Sungchul Kim, Ryan A. Rossi, Anup B. Rao, Tung Mai, Shuai Li:
Hallucination Diversity-Aware Active Learning for Text Summarization. NAACL-HLT 2024: 8665-8677 - [i37]Yu Xia, Xu Liu, Tong Yu, Sungchul Kim, Ryan A. Rossi, Anup B. Rao, Tung Mai, Shuai Li:
Hallucination Diversity-Aware Active Learning for Text Summarization. CoRR abs/2404.01588 (2024) - 2023
- [c43]Tung Mai, Alexander Munteanu, Cameron Musco, Anup Rao, Chris Schwiegelshohn, David P. Woodruff:
Optimal Sketching Bounds for Sparse Linear Regression. AISTATS 2023: 11288-11316 - [c42]Gaurav Gupta, Anup B. Rao, Tung Mai, Ryan A. Rossi, Xiang Chen, Saayan Mitra, Anshumali Shrivastava:
Near Neighbor Search for Constraint Queries. IEEE Big Data 2023: 1707-1715 - [c41]Renzhi Wu, Saayan Mitra, Xiang Chen, Anup B. Rao:
Decentralized Personalized Online Federated Learning. IEEE Big Data 2023: 1873-1882 - [c40]Sudhanshu Chanpuriya, Ryan A. Rossi, Anup B. Rao, Tung Mai, Nedim Lipka, Zhao Song, Cameron Musco:
Exact Representation of Sparse Networks with Symmetric Nonnegative Embeddings. NeurIPS 2023 - [c39]Mehrdad Ghadiri, David Arbour, Tung Mai, Cameron Musco, Anup B. Rao:
Finite Population Regression Adjustment and Non-asymptotic Guarantees for Treatment Effect Estimation. NeurIPS 2023 - [c38]Aniket Murhekar, David Arbour, Tung Mai, Anup B. Rao:
Brief Announcement: Dynamic Vector Bin Packing for Online Resource Allocation in the Cloud. SPAA 2023: 307-310 - [i36]Tung Mai, Alexander Munteanu, Cameron Musco, Anup B. Rao, Chris Schwiegelshohn, David P. Woodruff:
Optimal Sketching Bounds for Sparse Linear Regression. CoRR abs/2304.02261 (2023) - [i35]Aniket Murhekar, David Arbour, Tung Mai, Anup Rao:
Dynamic Vector Bin Packing for Online Resource Allocation in the Cloud. CoRR abs/2304.08648 (2023) - [i34]Renzhi Wu, Saayan Mitra, Xiang Chen, Anup Rao:
Decentralized Personalized Online Federated Learning. CoRR abs/2311.04817 (2023) - 2022
- [c37]Nikhil Sheoran, Subrata Mitra, Vibhor Porwal, Siddharth Ghetia, Jatin Varshney, Tung Mai, Anup B. Rao, Vikas Maddukuri:
Conditional Generative Model Based Predicate-Aware Query Approximation. AAAI 2022: 8259-8266 - [c36]David Arbour, Drew Dimmery, Tung Mai, Anup B. Rao:
Online Balanced Experimental Design. ICML 2022: 844-864 - [c35]Aravind Reddy, Ryan A. Rossi, Zhao Song, Anup B. Rao, Tung Mai, Nedim Lipka, Gang Wu, Eunyee Koh, Nesreen K. Ahmed:
One-Pass Algorithms for MAP Inference of Nonsymmetric Determinantal Point Processes. ICML 2022: 18463-18482 - [c34]Raghavendra Addanki, David Arbour, Tung Mai, Cameron Musco, Anup Rao:
Sample Constrained Treatment Effect Estimation. NeurIPS 2022 - [c33]Vibhor Porwal, Subrata Mitra, Fan Du, John Anderson, Nikhil Sheoran, Anup B. Rao, Tung Mai, Gautam Kowshik, Sapthotharan Nair, Sameeksha Arora, Saurabh Mahapatra:
Efficient Insights Discovery through Conditional Generative Model based Query Approximation. SIGMOD Conference 2022: 2397-2400 - [i33]Nikhil Sheoran, Subrata Mitra, Vibhor Porwal, Siddharth Ghetia, Jatin Varshney, Tung Mai, Anup B. Rao, Vikas Maddukuri:
Electra: Conditional Generative Model based Predicate-Aware Query Approximation. CoRR abs/2201.12420 (2022) - [i32]Raghavendra Addanki, David Arbour, Tung Mai, Cameron Musco, Anup Rao:
Sample Constrained Treatment Effect Estimation. CoRR abs/2210.06594 (2022) - 2021
- [j2]Ryan A. Rossi, Nesreen K. Ahmed, Aldo G. Carranza, David Arbour, Anup B. Rao, Sungchul Kim, Eunyee Koh:
Heterogeneous Graphlets. ACM Trans. Knowl. Discov. Data 15(1): 9:1-9:43 (2021) - [c32]Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, Danai Koutra:
Graph Neural Networks with Heterophily. AAAI 2021: 11168-11176 - [c31]My Phan, David Arbour, Drew Dimmery, Anup B. Rao:
Designing Transportable Experiments Under S-admissability. AISTATS 2021: 2539-2547 - [c30]David Arbour, Drew Dimmery, Anup B. Rao:
Efficient Balanced Treatment Assignments for Experimentation. AISTATS 2021: 3070-3078 - [c29]Ryan A. Rossi, Anup B. Rao, Sungchul Kim, Eunyee Koh, Nesreen K. Ahmed, Gang Wu:
From Closing Triangles to Higher-Order Motif Closures for Better Unsupervised Online Link Prediction. CIKM 2021: 4085-4093 - [c28]Enayat Ullah, Tung Mai, Anup Rao, Ryan A. Rossi, Raman Arora:
Machine Unlearning via Algorithmic Stability. COLT 2021: 4126-4142 - [c27]Mohammad Mehrabi, Adel Javanmard, Ryan A. Rossi, Anup B. Rao, Tung Mai:
Fundamental Tradeoffs in Distributionally Adversarial Training. ICML 2021: 7544-7554 - [c26]Mojtaba Sahraee-Ardakan, Tung Mai, Anup B. Rao, Ryan A. Rossi, Sundeep Rangan, Alyson K. Fletcher:
Asymptotics of Ridge Regression in Convolutional Models. ICML 2021: 9265-9275 - [c25]Gromit Yeuk-Yin Chan, Tung Mai, Anup B. Rao, Ryan A. Rossi, Fan Du, Cláudio T. Silva, Juliana Freire:
Interactive Audience Expansion On Large Scale Online Visitor Data. KDD 2021: 2621-2631 - [c24]Tung Mai, Cameron Musco, Anup Rao:
Coresets for Classification - Simplified and Strengthened. NeurIPS 2021: 11643-11654 - [i31]Mohammad Mehrabi, Adel Javanmard, Ryan A. Rossi, Anup Rao, Tung Mai:
Fundamental Tradeoffs in Distributionally Adversarial Training. CoRR abs/2101.06309 (2021) - [i30]Enayat Ullah, Tung Mai, Anup Rao, Ryan A. Rossi, Raman Arora:
Machine Unlearning via Algorithmic Stability. CoRR abs/2102.13179 (2021) - [i29]Mojtaba Sahraee-Ardakan, Tung Mai, Anup B. Rao, Ryan A. Rossi, Sundeep Rangan, Alyson K. Fletcher:
Asymptotics of Ridge Regression in Convolutional Models. CoRR abs/2103.04557 (2021) - [i28]Tung Mai, Anup B. Rao, Cameron Musco:
Coresets for Classification - Simplified and Strengthened. CoRR abs/2106.04254 (2021) - [i27]Tung Mai, Anup B. Rao, Ryan A. Rossi, Saeed Seddighin:
Optimal Space and Time for Streaming Pattern Matching. CoRR abs/2107.04660 (2021) - [i26]Sridhar Mahadevan, Anup Rao, Georgios Theocharous, Jennifer Healey:
Multiscale Manifold Warping. CoRR abs/2109.09222 (2021) - [i25]Sudhanshu Chanpuriya, Ryan A. Rossi, Anup B. Rao, Tung Mai, Nedim Lipka, Zhao Song, Cameron Musco:
An Interpretable Graph Generative Model with Heterophily. CoRR abs/2111.03030 (2021) - [i24]Aravind Reddy, Ryan A. Rossi, Zhao Song, Anup B. Rao, Tung Mai, Nedim Lipka, Gang Wu, Eunyee Koh, Nesreen K. Ahmed:
Online MAP Inference and Learning for Nonsymmetric Determinantal Point Processes. CoRR abs/2111.14674 (2021) - 2020
- [j1]David Durfee, John Peebles, Richard Peng, Anup B. Rao:
Determinant-Preserving Sparsification of SDDM Matrices. SIAM J. Comput. 49(4) (2020) - [c23]Aldo G. Carranza, Ryan A. Rossi, Anup Rao, Eunyee Koh:
Higher-order Clustering in Complex Heterogeneous Networks. KDD 2020: 25-35 - [c22]Aldo Pacchiano, My Phan, Yasin Abbasi-Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore, Csaba Szepesvári:
Model Selection in Contextual Stochastic Bandit Problems. NeurIPS 2020 - [c21]Karan Aggarwal, Georgios Theocharous, Anup B. Rao:
Dynamic Clustering with Discrete Time Event Prediction. SIGIR 2020: 1501-1504 - [c20]Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, Ryan A. Rossi:
Approximate Maximum Matching in Random Streams. SODA 2020: 1773-1785 - [c19]Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao, Yasin Abbasi-Yadkori:
A Structural Graph Representation Learning Framework. WSDM 2020: 483-491 - [c18]Ryan A. Rossi, Anup Rao, Tung Mai, Nesreen K. Ahmed:
Fast and Accurate Estimation of Typed Graphlets. WWW (Companion Volume) 2020: 32-34 - [c17]Ryan A. Rossi, Anup Rao, Sungchul Kim, Eunyee Koh, Nesreen K. Ahmed:
From Closing Triangles to Closing Higher-Order Motifs. WWW (Companion Volume) 2020: 42-43 - [c16]Gromit Yeuk-Yin Chan, Fan Du, Ryan A. Rossi, Anup B. Rao, Eunyee Koh, Cláudio T. Silva, Juliana Freire:
Real-Time Clustering for Large Sparse Online Visitor Data. WWW 2020: 1049-1059 - [i23]Aldo Pacchiano, My Phan, Yasin Abbasi-Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore, Csaba Szepesvári:
Model Selection in Contextual Stochastic Bandit Problems. CoRR abs/2003.01704 (2020) - [i22]Thanh Tan Nguyen, Ali Shameli, Yasin Abbasi-Yadkori, Anup Rao, Branislav Kveton:
Sample Efficient Graph-Based Optimization with Noisy Observations. CoRR abs/2006.02672 (2020) - [i21]Jiong Zhu, Ryan A. Rossi, Anup B. Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, Danai Koutra:
Graph Neural Networks with Heterophily. CoRR abs/2009.13566 (2020) - [i20]Ryan A. Rossi, Nesreen K. Ahmed, Aldo G. Carranza, David Arbour, Anup B. Rao, Sungchul Kim, Eunyee Koh:
Heterogeneous Graphlets. CoRR abs/2010.14058 (2020)
2010 – 2019
- 2019
- [c15]Thanh Tan Nguyen, Ali Shameli, Yasin Abbasi-Yadkori, Anup Rao, Branislav Kveton:
Sample Efficient Graph-Based Optimization with Noisy Observations. AISTATS 2019: 3333-3341 - [c14]John Boaz Lee, Ryan A. Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, Anup Rao:
Graph Convolutional Networks with Motif-based Attention. CIKM 2019: 499-508 - [c13]Di Jin, Ryan A. Rossi, Eunyee Koh, Sungchul Kim, Anup Rao, Danai Koutra:
Latent Network Summarization: Bridging Network Embedding and Summarization. KDD 2019: 987-997 - [c12]Ekta Gujral, Evangelos E. Papalexakis, Georgios Theocharous, Anup B. Rao:
Hacd: Hierarchical Agglomerative Community Detection In Social Networks. MLSP 2019: 1-6 - [c11]Tung Mai, Anup Rao, Matt Kapilevich, Ryan A. Rossi, Yasin Abbasi-Yadkori, Ritwik Sinha:
On Densification for Minwise Hashing. UAI 2019: 831-840 - [c10]David Durfee, Yu Gao, Anup B. Rao, Sebastian Wild:
Efficient Second-Order Shape-Constrained Function Fitting. WADS 2019: 395-408 - [i19]Ryan A. Rossi, Nesreen K. Ahmed, Aldo G. Carranza, David Arbour, Anup Rao, Sungchul Kim, Eunyee Koh:
Heterogeneous Network Motifs. CoRR abs/1901.10026 (2019) - [i18]David Durfee, Yu Gao, Anup B. Rao, Sebastian Wild:
Efficient Second-Order Shape-Constrained Function Fitting. CoRR abs/1905.02149 (2019) - [i17]Ryan A. Rossi, Anup Rao, Sungchul Kim, Eunyee Koh, Nesreen K. Ahmed, Gang Wu:
Higher-Order Ranking and Link Prediction: From Closing Triangles to Closing Higher-Order Motifs. CoRR abs/1906.05059 (2019) - [i16]Alireza Farhadi, MohammadTaghi Hajiaghayi, Tung Mai, Anup Rao, Ryan A. Rossi:
Approximate Maximum Matching in Random Streams. CoRR abs/1912.10497 (2019) - 2018
- [c9]Michael B. Cohen, Jonathan A. Kelner, Rasmus Kyng, John Peebles, Richard Peng, Anup B. Rao, Aaron Sidford:
Solving Directed Laplacian Systems in Nearly-Linear Time through Sparse LU Factorizations. FOCS 2018: 898-909 - [i15]Sharan Vaswani, Branislav Kveton, Zheng Wen, Anup Rao, Mark Schmidt, Yasin Abbasi-Yadkori:
New Insights into Bootstrapping for Bandits. CoRR abs/1805.09793 (2018) - [i14]John Boaz Lee, Ryan A. Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, Anup Rao:
Higher-order Graph Convolutional Networks. CoRR abs/1809.07697 (2018) - [i13]Aldo G. Carranza, Ryan A. Rossi, Anup Rao, Eunyee Koh:
Higher-order Spectral Clustering for Heterogeneous Graphs. CoRR abs/1810.02959 (2018) - [i12]Di Jin, Ryan A. Rossi, Danai Koutra, Eunyee Koh, Sungchul Kim, Anup Rao:
Bridging Network Embedding and Graph Summarization. CoRR abs/1811.04461 (2018) - [i11]Michael B. Cohen, Jonathan A. Kelner, Rasmus Kyng, John Peebles, Richard Peng, Anup B. Rao, Aaron Sidford:
Solving Directed Laplacian Systems in Nearly-Linear Time through Sparse LU Factorizations. CoRR abs/1811.10722 (2018) - 2017
- [c8]David Durfee, John Peebles, Richard Peng, Anup B. Rao:
Determinant-Preserving Sparsification of SDDM Matrices with Applications to Counting and Sampling Spanning Trees. FOCS 2017: 926-937 - [c7]Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron Sidford, Adrian Vladu:
Almost-linear-time algorithms for Markov chains and new spectral primitives for directed graphs. STOC 2017: 410-419 - [c6]David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, Sushant Sachdeva:
Sampling random spanning trees faster than matrix multiplication. STOC 2017: 730-742 - [i10]Tung Mai, Richard Peng, Anup B. Rao, Vijay V. Vazirani:
Concave Flow on Small Depth Directed Networks. CoRR abs/1704.07791 (2017) - [i9]David Durfee, John Peebles, Richard Peng, Anup B. Rao:
Determinant-Preserving Sparsification of SDDM Matrices with Applications to Counting and Sampling Spanning Trees. CoRR abs/1705.00985 (2017) - [i8]Branislav Kveton, Csaba Szepesvári, Anup Rao, Zheng Wen, Yasin Abbasi-Yadkori, S. Muthukrishnan:
Stochastic Low-Rank Bandits. CoRR abs/1712.04644 (2017) - 2016
- [c5]Kevin A. Lai, Anup B. Rao, Santosh S. Vempala:
Agnostic Estimation of Mean and Covariance. FOCS 2016: 665-674 - [i7]Kevin A. Lai, Anup B. Rao, Santosh S. Vempala:
Agnostic Estimation of Mean and Covariance. CoRR abs/1604.06968 (2016) - [i6]Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron Sidford, Adrian Vladu:
Almost-Linear-Time Algorithms for Markov Chains and New Spectral Primitives for Directed Graphs. CoRR abs/1611.00755 (2016) - [i5]David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, Sushant Sachdeva:
Sampling Random Spanning Trees Faster than Matrix Multiplication. CoRR abs/1611.07451 (2016) - 2015
- [c4]Peter Chin, Anup Rao, Van Vu:
Stochastic Block Model and Community Detection in Sparse Graphs: A spectral algorithm with optimal rate of recovery. COLT 2015: 391-423 - [c3]Rasmus Kyng, Anup Rao, Sushant Sachdeva, Daniel A. Spielman:
Algorithms for Lipschitz Learning on Graphs. COLT 2015: 1190-1223 - [c2]Rasmus Kyng, Anup Rao, Sushant Sachdeva:
Fast, Provable Algorithms for Isotonic Regression in all L_p-norms. NIPS 2015: 2719-2727 - [i4]Peter Chin, Anup Rao, Van Vu:
Stochastic Block Model and Community Detection in the Sparse Graphs: A spectral algorithm with optimal rate of recovery. CoRR abs/1501.05021 (2015) - [i3]Rasmus Kyng, Anup Rao, Sushant Sachdeva, Daniel A. Spielman:
Algorithms for Lipschitz Learning on Graphs. CoRR abs/1505.00290 (2015) - [i2]Rasmus Kyng, Anup Rao, Sushant Sachdeva:
Fast, Provable Algorithms for Isotonic Regression in all ℓp-norms. CoRR abs/1507.00710 (2015) - 2014
- [c1]Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng, Anup B. Rao, Shen Chen Xu:
Solving SDD linear systems in nearly mlog1/2n time. STOC 2014: 343-352 - [i1]Michael B. Cohen, Rasmus Kyng, Jakub W. Pachocki, Richard Peng, Anup B. Rao:
Preconditioning in Expectation. CoRR abs/1401.6236 (2014)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-26 01:00 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint