default search action
Bertrand Charpentier
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [b1]Bertrand Charpentier:
Uncertainty Estimation for Independent and Non-Independent Data. Technical University of Munich, Germany, 2024 - [c13]Dominik Fuchsgruber, Tom Wollschläger, Bertrand Charpentier, Antonio Oroz, Stephan Günnemann:
Uncertainty for Active Learning on Graphs. ICML 2024 - [i22]Rayen Dhahri, Alexander Immer, Bertrand Charpentier, Stephan Günnemann, Vincent Fortuin:
Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks Using the Marginal Likelihood. CoRR abs/2402.15978 (2024) - [i21]Xun Wang, John Rachwan, Stephan Günnemann, Bertrand Charpentier:
Structurally Prune Anything: Any Architecture, Any Framework, Any Time. CoRR abs/2403.18955 (2024) - [i20]Dominik Fuchsgruber, Tom Wollschläger, Bertrand Charpentier, Antonio Oroz, Stephan Günnemann:
Uncertainty for Active Learning on Graphs. CoRR abs/2405.01462 (2024) - [i19]Florence Regol, Joud Chataoui, Bertrand Charpentier, Mark Coates, Pablo Piantanida, Stephan Günnemann:
Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE. CoRR abs/2406.14404 (2024) - 2023
- [c12]Tom Wollschläger, Nicholas Gao, Bertrand Charpentier, Mohamed Amine Ketata, Stephan Günnemann:
Uncertainty Estimation for Molecules: Desiderata and Methods. ICML 2023: 37133-37156 - [c11]Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann, Michael M. Bronstein:
Edge Directionality Improves Learning on Heterophilic Graphs. LoG 2023: 25 - [c10]Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann:
Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions. NeurIPS 2023 - [i18]Bertrand Charpentier, Chenxiang Zhang, Stephan Günnemann:
Training, Architecture, and Prior for Deterministic Uncertainty Methods. CoRR abs/2303.05796 (2023) - [i17]Johannes Getzner, Bertrand Charpentier, Stephan Günnemann:
Accuracy is not the only Metric that matters: Estimating the Energy Consumption of Deep Learning Models. CoRR abs/2304.00897 (2023) - [i16]Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann, Michael M. Bronstein:
Edge Directionality Improves Learning on Heterophilic Graphs. CoRR abs/2305.10498 (2023) - [i15]Tom Wollschläger, Nicholas Gao, Bertrand Charpentier, Mohamed Amine Ketata, Stephan Günnemann:
Uncertainty Estimation for Molecules: Desiderata and Methods. CoRR abs/2306.14916 (2023) - [i14]Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann:
Adversarial Training for Graph Neural Networks. CoRR abs/2306.15427 (2023) - 2022
- [c9]Bertrand Charpentier, Oliver Borchert, Daniel Zügner, Simon Geisler, Stephan Günnemann:
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions. ICLR 2022 - [c8]Bertrand Charpentier, Simon Kibler, Stephan Günnemann:
Differentiable DAG Sampling. ICLR 2022 - [c7]Daniel Zügner, Bertrand Charpentier, Morgane Ayle, Sascha Geringer, Stephan Günnemann:
End-to-End Learning of Probabilistic Hierarchies on Graphs. ICLR 2022 - [c6]John Rachwan, Daniel Zügner, Bertrand Charpentier, Simon Geisler, Morgane Ayle, Stephan Günnemann:
Winning the Lottery Ahead of Time: Efficient Early Network Pruning. ICML 2022: 18293-18309 - [i13]Bertrand Charpentier, Simon Kibler, Stephan Günnemann:
Differentiable DAG Sampling. CoRR abs/2203.08509 (2022) - [i12]Bertrand Charpentier, Ransalu Senanayake, Mykel J. Kochenderfer, Stephan Günnemann:
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning. CoRR abs/2206.01558 (2022) - [i11]John Rachwan, Daniel Zügner, Bertrand Charpentier, Simon Geisler, Morgane Ayle, Stephan Günnemann:
Winning the Lottery Ahead of Time: Efficient Early Network Pruning. CoRR abs/2206.10451 (2022) - [i10]Morgane Ayle, Bertrand Charpentier, John Rachwan, Daniel Zügner, Simon Geisler, Stephan Günnemann:
On the Robustness and Anomaly Detection of Sparse Neural Networks. CoRR abs/2207.04227 (2022) - 2021
- [c5]Anna-Kathrin Kopetzki, Bertrand Charpentier, Daniel Zügner, Sandhya Giri, Stephan Günnemann:
Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable? ICML 2021: 5707-5718 - [c4]Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, Stephan Günnemann:
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification. NeurIPS 2021: 18033-18048 - [i9]Bertrand Charpentier, Oliver Borchert, Daniel Zügner, Simon Geisler, Stephan Günnemann:
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions. CoRR abs/2105.04471 (2021) - [i8]Sven Elflein, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann:
On Out-of-distribution Detection with Energy-based Models. CoRR abs/2107.08785 (2021) - [i7]Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, Stephan Günnemann:
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification. CoRR abs/2110.14012 (2021) - 2020
- [j1]Thomas Bonald, Nathan de Lara, Quentin Lutz, Bertrand Charpentier:
Scikit-network: Graph Analysis in Python. J. Mach. Learn. Res. 21: 185:1-185:6 (2020) - [c3]Bertrand Charpentier, Daniel Zügner, Stephan Günnemann:
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts. NeurIPS 2020 - [i6]Bertrand Charpentier, Daniel Zügner, Stephan Günnemann:
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts. CoRR abs/2006.09239 (2020) - [i5]Thomas Bonald, Nathan de Lara, Quentin Lutz, Bertrand Charpentier:
Scikit-network: Graph Analysis in Python. CoRR abs/2009.07660 (2020) - [i4]Anna-Kathrin Kopetzki, Bertrand Charpentier, Daniel Zügner, Sandhya Giri, Stephan Günnemann:
Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable? CoRR abs/2010.14986 (2020)
2010 – 2019
- 2019
- [c2]Bertrand Charpentier, Thomas Bonald:
Tree Sampling Divergence: An Information-Theoretic Metric for Hierarchical Graph Clustering. IJCAI 2019: 2067-2073 - [c1]Bertrand Charpentier, Marin Bilos, Stephan Günnemann:
Uncertainty on Asynchronous Time Event Prediction. NeurIPS 2019: 12831-12840 - [i3]Marin Bilos, Bertrand Charpentier, Stephan Günnemann:
Uncertainty on Asynchronous Time Event Prediction. CoRR abs/1911.05503 (2019) - 2018
- [i2]Thomas Bonald, Bertrand Charpentier, Alexis Galland, Alexandre Hollocou:
Hierarchical Graph Clustering using Node Pair Sampling. CoRR abs/1806.01664 (2018) - [i1]Thomas Bonald, Bertrand Charpentier:
Learning Graph Representations by Dendrograms. CoRR abs/1807.05087 (2018)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-13 00:44 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint