


Остановите войну!
for scientists:


default search action
Mark Coates
Mark J. Coates – M. J. Coates
Person information

- affiliation: McGill University, Montreal, Canada
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c110]Yuening Wang, Yingxue Zhang, Antonios Valkanas, Ruiming Tang, Chen Ma
, Jianye Hao, Mark Coates:
Structure Aware Incremental Learning with Personalized Imitation Weights for Recommender Systems. AAAI 2023: 4711-4719 - [c109]Florence Regol, Mark Coates:
Diffusing Gaussian Mixtures for Generating Categorical Data. AAAI 2023: 9570-9578 - [c108]Mehrtash Mehrabi, Walid Masoudimansour, Yingxue Zhang, Jie Chuai, Zhitang Chen, Mark Coates, Jianye Hao, Yanhui Geng:
Neighbor Auto-Grouping Graph Neural Networks for Handover Parameter Configuration in Cellular Network. AAAI 2023: 14400-14407 - [c107]Amur Ghose, Yingxue Zhang, Jianye Hao, Mark Coates:
Spectral Augmentations for Graph Contrastive Learning. AISTATS 2023: 11213-11266 - [c106]Florence Regol, Anja Kroon, Mark Coates:
Evaluation of Categorical Generative Models - Bridging the Gap Between Real and Synthetic Data. ICASSP 2023: 1-5 - [c105]Pavel Rumiantsev, Mark Coates:
Performing Neural Architecture Search Without Gradients. ICASSP 2023: 1-5 - [c104]Haolun Wu, Yingxue Zhang, Chen Ma
, Wei Guo, Ruiming Tang, Xue Liu, Mark Coates:
Intent-aware Multi-source Contrastive Alignment for Tag-enhanced Recommendation. ICDE 2023: 1112-1125 - [c103]Can Chen, Yingxue Zhang, Xue Liu, Mark Coates:
Bidirectional Learning for Offline Model-based Biological Sequence Design. ICML 2023: 5351-5366 - [c102]Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip H. S. Torr, Ser-Nam Lim:
Graph Inductive Biases in Transformers without Message Passing. ICML 2023: 23321-23337 - [i50]Can Chen, Yingxue Zhang, Xue Liu, Mark Coates:
Bidirectional Learning for Offline Model-based Biological Sequence Design. CoRR abs/2301.02931 (2023) - [i49]Mehrtash Mehrabi, Walid Masoudimansour, Yingxue Zhang, Jie Chuai, Zhitang Chen, Mark Coates, Jianye Hao, Yanhui Geng:
Neighbor Auto-Grouping Graph Neural Networks for Handover Parameter Configuration in Cellular Network. CoRR abs/2301.03412 (2023) - [i48]Amur Ghose, Yingxue Zhang, Jianye Hao, Mark Coates:
Spectral Augmentations for Graph Contrastive Learning. CoRR abs/2302.02909 (2023) - [i47]Florence Regol, Mark Coates:
Diffusing Gaussian Mixtures for Generating Categorical Data. CoRR abs/2303.04635 (2023) - [i46]Yuening Wang, Yingxue Zhang, Antonios Valkanas, Ruiming Tang, Chen Ma, Jianye Hao, Mark Coates:
Structure Aware Incremental Learning with Personalized Imitation Weights for Recommender Systems. CoRR abs/2305.01204 (2023) - [i45]Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip H. S. Torr, Ser-Nam Lim:
Graph Inductive Biases in Transformers without Message Passing. CoRR abs/2305.17589 (2023) - [i44]Muberra Ozmen, Joseph Cotnareanu, Mark Coates:
Substituting Data Annotation with Balanced Updates and Collective Loss in Multi-label Text Classification. CoRR abs/2309.13543 (2023) - [i43]Florence Regol, Joud Chataoui, Mark Coates:
Jointly-Learned Exit and Inference for a Dynamic Neural Network : JEI-DNN. CoRR abs/2310.09163 (2023) - [i42]Mai Zeng, Florence Regol, Mark Coates:
Interacting Diffusion Processes for Event Sequence Forecasting. CoRR abs/2310.17800 (2023) - [i41]Yitian Zhang, Liheng Ma, Soumyasundar Pal, Yingxue Zhang, Mark Coates:
Multi-resolution Time-Series Transformer for Long-term Forecasting. CoRR abs/2311.04147 (2023) - 2022
- [j41]Florence Regol, Soumyasundar Pal, Jianing Sun, Yingxue Zhang, Yanhui Geng, Mark Coates:
Node copying: A random graph model for effective graph sampling. Signal Process. 192: 108335 (2022) - [j40]Yitian Zhang
, Huihui Wu
, Mark Coates
:
On the Design of Channel Coding Autoencoders With Arbitrary Rates for ISI Channels. IEEE Wirel. Commun. Lett. 11(2): 426-430 (2022) - [c101]Soumyasundar Pal, Antonios Valkanas, Florence Regol, Mark Coates:
Bag Graph: Multiple Instance Learning Using Bayesian Graph Neural Networks. AAAI 2022: 7922-7930 - [c100]Antonios Valkanas, André-Walter Panzini, Mark Coates:
Towards Bayesian Learning of the Architecture, Graph and Parameters for Graph Neural Networks. IEEECONF 2022: 852-856 - [c99]Haolun Wu, Chen Ma
, Yingxue Zhang, Xue Liu, Ruiming Tang, Mark Coates:
Adapting Triplet Importance of Implicit Feedback for Personalized Recommendation. CIKM 2022: 2148-2157 - [c98]Yitian Zhang, Florence Regol, Antonios Valkanas, Mark Coates:
Contrastive Learning for Time Series on Dynamic Graphs. EUSIPCO 2022: 742-746 - [c97]Muberra Ozmen, Hao Zhang, Pengyun Wang, Mark Coates:
Multi-Relation Message Passing for Multi-Label Text Classification. ICASSP 2022: 3583-3587 - [c96]Can Chen, Yingxue Zhang, Jie Fu, Xue (Steve) Liu, Mark Coates:
Bidirectional Learning for Offline Infinite-width Model-based Optimization. NeurIPS 2022 - [i40]Boris N. Oreshkin, Antonios Valkanas, Félix G. Harvey, Louis-Simon Ménard, Florent Bocquelet, Mark J. Coates:
Motion Inbetweening via Deep Δ-Interpolator. CoRR abs/2201.06701 (2022) - [i39]Segolene Brivet, Faicel Chamroukhi, Mark Coates, Reza Forghani, Peter Savadjiev:
Spectral image clustering on dual-energy CT scans using functional regression mixtures. CoRR abs/2201.13398 (2022) - [i38]Muberra Ozmen, Hao Zhang, Pengyun Wang, Mark Coates:
Multi-relation Message Passing for Multi-label Text Classification. CoRR abs/2202.04844 (2022) - [i37]Soumyasundar Pal, Antonios Valkanas, Florence Regol, Mark Coates:
Bag Graph: Multiple Instance Learning using Bayesian Graph Neural Networks. CoRR abs/2202.11132 (2022) - [i36]Haolun Wu, Chen Ma, Yingxue Zhang, Xue Liu, Ruiming Tang, Mark Coates:
Adapting Triplet Importance of Implicit Feedback for Personalized Recommendation. CoRR abs/2208.01709 (2022) - [i35]Florence Regol, Soumyasundar Pal, Jianing Sun, Yingxue Zhang, Yanhui Geng, Mark Coates:
Node Copying: A Random Graph Model for Effective Graph Sampling. CoRR abs/2208.02435 (2022) - [i34]Can Chen, Yingxue Zhang, Jie Fu, Xue Liu, Mark Coates:
Bidirectional Learning for Offline Infinite-width Model-based Optimization. CoRR abs/2209.07507 (2022) - [i33]Yitian Zhang, Florence Regol, Antonios Valkanas, Mark Coates:
Contrastive Learning for Time Series on Dynamic Graphs. CoRR abs/2209.10662 (2022) - [i32]Florence Regol, Anja Kroon, Mark J. Coates:
Evaluation of Categorical Generative Models - Bridging the Gap Between Real and Synthetic Data. CoRR abs/2210.16405 (2022) - [i31]Mohammad Ali Alomrani, Mahdi Biparva, Yingxue Zhang, Mark Coates:
DyG2Vec: Representation Learning for Dynamic Graphs with Self-Supervision. CoRR abs/2210.16906 (2022) - [i30]Haolun Wu, Yingxue Zhang, Chen Ma, Wei Guo, Ruiming Tang, Xue Liu, Mark Coates:
Intent-aware Multi-source Contrastive Alignment for Tag-enhanced Recommendation. CoRR abs/2211.06370 (2022) - 2021
- [j39]Cody Mazza-Anthony
, Bogdan Mazoure, Mark Coates
:
Learning Gaussian Graphical Models With Ordered Weighted $\ell _1$ Regularization. IEEE Trans. Signal Process. 69: 489-499 (2021) - [c95]Chen Ma
, Liheng Ma, Yingxue Zhang, Haolun Wu, Xue Liu, Mark Coates:
Knowledge-Enhanced Top-K Recommendation in Poincaré Ball. AAAI 2021: 4285-4293 - [c94]Boris N. Oreshkin, Arezou Amini, Lucy Coyle, Mark Coates:
FC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic Forecasting. AAAI 2021: 9233-9241 - [c93]Yingxue Zhang, Florence Regol, Soumyasundar Pal, Sakif Khan, Liheng Ma, Mark Coates:
Detection and Defense of Topological Adversarial Attacks on Graphs. AISTATS 2021: 2989-2997 - [c92]Kian Ahrabian, Yishi Xu, Yingxue Zhang, Jiapeng Wu, Yuening Wang, Mark Coates:
Structure Aware Experience Replay for Incremental Learning in Graph-based Recommender Systems. CIKM 2021: 2832-2836 - [c91]Yuening Wang, Yingxue Zhang, Mark Coates:
Graph Structure Aware Contrastive Knowledge Distillation for Incremental Learning in Recommender Systems. CIKM 2021: 3518-3522 - [c90]Amur Ghose, Vincent Zhang, Yingxue Zhang, Dong Li, Wulong Liu, Mark Coates:
Generalizable Cross-Graph Embedding for GNN-based Congestion Prediction. ICCAD 2021: 1-9 - [c89]Soumyasundar Pal, Liheng Ma, Yingxue Zhang, Mark Coates:
RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting. ICML 2021: 8336-8348 - [c88]Jiapeng Wu, Yishi Xu, Yingxue Zhang, Chen Ma
, Mark Coates, Jackie Chi Kit Cheung:
TIE: A Framework for Embedding-based Incremental Temporal Knowledge Graph Completion. SIGIR 2021: 428-437 - [i29]Chen Ma, Liheng Ma, Yingxue Zhang, Ruiming Tang, Xue Liu, Mark Coates:
Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation. CoRR abs/2101.04849 (2021) - [i28]Chen Ma, Liheng Ma, Yingxue Zhang, Haolun Wu, Xue Liu, Mark Coates:
Knowledge-Enhanced Top-K Recommendation in Poincaré Ball. CoRR abs/2101.04852 (2021) - [i27]Jiapeng Wu, Yishi Xu, Yingxue Zhang, Chen Ma, Mark Coates, Jackie Chi Kit Cheung:
TIE: A Framework for Embedding-based Incremental Temporal Knowledge Graph Completion. CoRR abs/2104.08419 (2021) - [i26]Soumyasundar Pal, Liheng Ma, Yingxue Zhang, Mark Coates:
RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting. CoRR abs/2106.06064 (2021) - [i25]Amur Ghose, Vincent Zhang, Yingxue Zhang, Dong Li, Wulong Liu, Mark Coates:
Generalizable Cross-Graph Embedding for GNN-based Congestion Prediction. CoRR abs/2111.05941 (2021) - 2020
- [c87]Chen Ma
, Liheng Ma, Yingxue Zhang, Jianing Sun, Xue Liu, Mark Coates:
Memory Augmented Graph Neural Networks for Sequential Recommendation. AAAI 2020: 5045-5052 - [c86]Antonios Valkanas, Florence Regol, Mark Coates:
Learning from Networks of Distributions. ACSSC 2020: 574-578 - [c85]Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Mark Coates:
GraphSAIL: Graph Structure Aware Incremental Learning for Recommender Systems. CIKM 2020: 2861-2868 - [c84]Huihui Wu, Yitian Zhang, Xueqing Zhao, Ningbo Zhu, Mark Coates:
End-to-end Physical Layer Communication using Bi-directional GRUs for ISI Channels. GLOBECOM (Workshops) 2020: 1-6 - [c83]Florence Regol, Soumyasundar Pal, Yingxue Zhang, Mark Coates:
Active Learning on Attributed Graphs via Graph Cognizant Logistic Regression and Preemptive Query Generation. ICML 2020: 8041-8050 - [c82]Chen Ma
, Liheng Ma, Yingxue Zhang, Ruiming Tang, Xue Liu, Mark Coates:
Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation. KDD 2020: 1036-1044 - [c81]Jianing Sun, Wei Guo
, Dengcheng Zhang, Yingxue Zhang, Florence Regol, Yaochen Hu, Huifeng Guo, Ruiming Tang, Han Yuan, Xiuqiang He, Mark Coates:
A Framework for Recommending Accurate and Diverse Items Using Bayesian Graph Convolutional Neural Networks. KDD 2020: 2030-2039 - [c80]Jianing Sun, Yingxue Zhang, Wei Guo
, Huifeng Guo, Ruiming Tang, Xiuqiang He, Chen Ma
, Mark Coates:
Neighbor Interaction Aware Graph Convolution Networks for Recommendation. SIGIR 2020: 1289-1298 - [c79]Yingxu Wang
, Svetlana N. Yanushkevich
, Ming Hou
, Konstantinos N. Plataniotis, Mark Coates, Marina L. Gavrilova
, Yaoping Hu, Fakhri Karray, Henry Leung, Arash Mohammadi, Sam Kwong
, Edward W. Tunstel, Ljiljana Trajkovic, Imre J. Rudas, Janusz Kacprzyk:
A Tripartite Theory of Trustworthiness for Autonomous Systems. SMC 2020: 3375-3380 - [c78]Soumyasundar Pal, Saber Malekmohammadi, Florence Regol, Yingxue Zhang, Yishi Xu, Mark Coates:
Non Parametric Graph Learning for Bayesian Graph Neural Networks. UAI 2020: 1318-1327 - [i24]Jianing Sun, Yingxue Zhang, Chen Ma, Mark Coates, Huifeng Guo, Ruiming Tang, Xiuqiang He:
Multi-Graph Convolution Collaborative Filtering. CoRR abs/2001.00267 (2020) - [i23]Soumyasundar Pal, Saber Malekmohammadi, Florence Regol, Yingxue Zhang, Yishi Xu, Mark Coates:
Non-Parametric Graph Learning for Bayesian Graph Neural Networks. CoRR abs/2006.13335 (2020) - [i22]Florence Regol, Soumyasundar Pal, Yingxue Zhang, Mark Coates:
Active Learning on Attributed Graphs via Graph Cognizant Logistic Regression and Preemptive Query Generation. CoRR abs/2007.05003 (2020) - [i21]Florence Regol, Soumyasundar Pal, Mark Coates:
Node Copying for Protection Against Graph Neural Network Topology Attacks. CoRR abs/2007.06704 (2020) - [i20]Boris N. Oreshkin, Arezou Amini, Lucy Coyle, Mark J. Coates:
FC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic Forecasting. CoRR abs/2007.15531 (2020) - [i19]Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Mark Coates:
GraphSAIL: Graph Structure Aware Incremental Learning for Recommender Systems. CoRR abs/2008.13517 (2020) - [i18]Fatemeh Teimury, Bruno Roy, Juan Sebastián Casallas, David MacDonald, Mark Coates:
GraphSeam: Supervised Graph Learning Framework for Semantic UV Mapping. CoRR abs/2011.13748 (2020)
2010 – 2019
- 2019
- [j38]Jun Ye Yu
, Mark J. Coates
, Michael G. Rabbat
:
Graph-Based Compression for Distributed Particle Filters. IEEE Trans. Signal Inf. Process. over Networks 5(3): 404-417 (2019) - [j37]Yunpeng Li
, Soumyasundar Pal
, Mark J. Coates
:
Invertible Particle-Flow-Based Sequential MCMC With Extension to Gaussian Mixture Noise Models. IEEE Trans. Signal Process. 67(9): 2499-2512 (2019) - [c77]Yingxue Zhang, Soumyasundar Pal, Mark Coates, Deniz Üstebay:
Bayesian Graph Convolutional Neural Networks for Semi-Supervised Classification. AAAI 2019: 5829-5836 - [c76]Soumyasundar Pal, Mark Coates:
Particle Flow Particle Filter using Gromov's method. CAMSAP 2019: 634-638 - [c75]Florence Regol, Soumyasundar Pal, Mark Coates:
Node Copying for Protection Against Graph Neural Network Topology Attacks. CAMSAP 2019: 709-713 - [c74]Lena Kranold, Collin Quintyne, Mark Coates, Milica Popovic:
Microwave Radar for Breast Screening: Initial Clinical Data with Suspicious-Lesion Patients. EMBC 2019: 3191-3194 - [c73]Juliette Valenchon, Mark Coates:
Multiple-graph Recurrent Graph Convolutional Neural Network Architectures for Predicting Disease Outcomes. ICASSP 2019: 3157-3161 - [c72]Soumyasundar Pal, Mark Coates:
Scalable MCMC in Degree Corrected Stochastic Block Model. ICASSP 2019: 5461-5465 - [c71]Jianing Sun, Yingxue Zhang, Chen Ma
, Mark Coates, Huifeng Guo, Ruiming Tang, Xiuqiang He:
Multi-graph Convolution Collaborative Filtering. ICDM 2019: 1306-1311 - [i17]Cody Mazza-Anthony, Bogdan Mazoure, Mark Coates:
Learning Gaussian Graphical Models with Ordered Weighted L1 Regularization. CoRR abs/1906.02719 (2019) - [i16]Soumyasundar Pal, Florence Regol, Mark J. Coates:
Bayesian Graph Convolutional Neural Networks Using Non-Parametric Graph Learning. CoRR abs/1910.12132 (2019) - [i15]Soumyasundar Pal, Florence Regol, Mark Coates:
Bayesian Graph Convolutional Neural Networks using Node Copying. CoRR abs/1911.04965 (2019) - [i14]Chen Ma, Liheng Ma, Yingxue Zhang, Jianing Sun, Xue Liu, Mark Coates:
Memory Augmented Graph Neural Networks for Sequential Recommendation. CoRR abs/1912.11730 (2019) - 2018
- [c70]Soumyasundar Pal, Mark Coates:
Particle Flow Particle Filter for Gaussian Mixture Noise Models. ICASSP 2018: 4249-4253 - [c69]Peter Henderson, Matthew Vertescher, David Meger, Mark Coates:
Cost Adaptation for Robust Decentralized Swarm Behaviour. IROS 2018: 4099-4106 - [c68]Soumyasundar Pal, Mark Coates:
Sequential MCMC With The Discrete Bouncy Particle Sampler. SSP 2018: 663-667 - [i13]Yingxue Zhang, Soumyasundar Pal, Mark Coates, Deniz Üstebay:
Bayesian graph convolutional neural networks for semi-supervised classification. CoRR abs/1811.11103 (2018) - 2017
- [j36]Yunpeng Li
, Emily Porter
, Adam Santorelli
, Milica Popovic, Mark Coates:
Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation. Biomed. Signal Process. Control. 31: 366-376 (2017) - [j35]Milad Kharratzadeh, Mark Coates:
Semi-parametric order-based generalized multivariate regression. J. Multivar. Anal. 156: 89-102 (2017) - [j34]Shohreh Shaghaghian, Mark Coates:
Online Bayesian Inference of Diffusion Networks. IEEE Trans. Signal Inf. Process. over Networks 3(3): 500-512 (2017) - [j33]Yunpeng Li
, Mark Coates:
Particle Filtering With Invertible Particle Flow. IEEE Trans. Signal Process. 65(15): 4102-4116 (2017) - [j32]Augustin-Alexandru Saucan, Mark J. Coates, Michael G. Rabbat:
A Multisensor Multi-Bernoulli Filter. IEEE Trans. Signal Process. 65(20): 5495-5509 (2017) - [c67]Soumyasundar Pal, Mark Coates:
Gaussian sum particle flow filter. CAMSAP 2017: 1-5 - [c66]Jun Ye Yu, Augustin-Alexandru Saucan, Mark Coates, Michael G. Rabbat:
Algorithms for the multi-sensor assignment problem in the δ-generalized labeled multi-Bernoulli filter. CAMSAP 2017: 1-5 - [c65]Yunpeng Li
, Mark Coates:
Sequential MCMC with invertible particle flow. ICASSP 2017: 3844-3848 - [c64]Augustin-Alexandru Saucan, Yunpeng Li
, Mark Coates:
Particle flow SMC delta-GLMB filter. ICASSP 2017: 4381-4385 - [i12]Peter Henderson, Matthew Vertescher, David Meger, Mark Coates:
Cost Adaptation for Robust Decentralized Swarm Behaviour. CoRR abs/1709.07114 (2017) - 2016
- [j31]Jun Ye Yu, Mark J. Coates, Michael G. Rabbat, Stéphane Blouin:
A Distributed Particle Filter for Bearings-Only Tracking on Spherical Surfaces. IEEE Signal Process. Lett. 23(3): 326-330 (2016) - [j30]Santosh Nannuru
, Stéphane Blouin, Mark Coates, Michael G. Rabbat:
Multisensor CPHD filter. IEEE Trans. Aerosp. Electron. Syst. 52(4): 1834-1854 (2016) - [j29]Emily Porter
, Mark Coates, Milica Popovic:
An Early Clinical Study of Time-Domain Microwave Radar for Breast Health Monitoring. IEEE Trans. Biomed. Eng. 63(3): 530-539 (2016) - [c63]Michael G. Rabbat, Mark Coates, Stéphane Blouin:
Graph Laplacian distributed particle filtering. EUSIPCO 2016: 1493-1497 - [c62]Yunpeng Li, Mark Coates:
Fast particle flow particle filters via clustering. FUSION 2016: 2022-2027 - [c61]Jun Ye Yu, Mark Coates, Michael G. Rabbat:
Distributed multi-sensor CPHD filter using pairwise gossiping. ICASSP 2016: 3176-3180 - [c60]Yunpeng Li
, Lingling Zhao, Mark Coates:
Particle flow for particle filtering. ICASSP 2016: 3979-3983 - [c59]Milad Kharratzadeh, Mark Coates:
Sparse multivariate factor regression. SSP 2016: 1-5 - [c58]Milad Kharratzadeh, Mark Coates:
Order-based generalized multivariate regression. SSP 2016: 1-5 - [c57]Shohreh Shaghaghian, Mark Coates:
Bayesian inference of diffusion networks with unknown infection times. SSP 2016: 1-5 - [i11]Shohreh Shaghaghian, Mark Coates:
Bayesian Inference of Diffusion Networks with Unknown Infection Times. CoRR abs/1602.08114 (2016) - [i10]Shohreh Shaghaghian, Mark Coates:
Online Bayesian Inference of Diffusion Networks. CoRR abs/1611.01086 (2016) - 2015
- [j28]Milad Kharratzadeh, Benjamin Renard, Mark J. Coates:
Bayesian topic model approaches to online and time-dependent clustering. Digit. Signal Process. 47: 25-35 (2015) - [j27]Santosh Nannuru
, Mark Coates:
Hybrid multi-Bernoulli and CPHD filters for superpositional sensors. IEEE Trans. Aerosp. Electron. Syst. 51(4): 2847-2863 (2015) - [j26]Shohreh Shaghaghian, Mark Coates:
Optimal Forwarding in Opportunistic Delay Tolerant Networks With Meeting Rate Estimations. IEEE Trans. Signal Inf. Process. over Networks 1(2): 104-116 (2015) - [j25]Syamantak Datta Gupta, Mark Coates, Michael G. Rabbat:
Error Propagation in Gossip-Based Distributed Particle Filters. IEEE Trans. Signal Inf. Process. over Networks 1(3): 148-163 (2015) - [c56]Yunpeng Li
, Lingling Zhao, Mark Coates:
Particle flow auxiliary particle filter. CAMSAP 2015: 157-160 - [c55]Jun Ye Yu, Michael G. Rabbat, Mark Coates, Stéphane Blouin:
Performance investigation on constraint sufficient statistics distributed particle filter. CCECE 2015: 1526-1531 - [c54]Syamantak Datta Gupta, Jun Ye Yu, Mahendra Mallick, Mark Coates, Mark R. Morelande:
Comparison of angle-only filtering algorithms in 3D using EKF, UKF, PF, PFF, and ensemble KF. FUSION 2015: 1649-1656 - [c53]Yunpeng Li
, Adam Santorelli
, Olivier Laforest, Mark Coates:
Cost-sensitive ensemble classifiers for microwave breast cancer detection. ICASSP 2015: 952-956 - [c52]Benjamin Renard, Milad Kharratzadeh, Mark Coates:
Online time-dependent clustering using probabilistic topic models. ICASSP 2015: 2036-2040 - [c51]Santosh Nannuru
, Mark Coates, Michael G. Rabbat, Stéphane Blouin:
General solution and approximate implementation of the multisensor multitarget CPHD filter. ICASSP 2015: 4055-4059 - [i9]Shohreh Shaghaghian, Mark Coates:
Optimal Forwarding in Opportunistic Delay Tolerant Networks with Meeting Rate Estimations. CoRR abs/1506.04729 (2015) - 2014
- [c50]Arslan Shahid, Deniz Üstebay, Mark Coates:
Distributed ensemble Kalman filtering. SAM 2014: 217-220 - [c49]