Остановите войну!
for scientists:
default search action
Volker Roth 0001
Person information
- affiliation: University of Basel, Switzerland
- affiliation: University of Bonn, Germany
Other persons with the same name
- Volker Roth 0002 — FU Berlin, Germany (and 1 more)
- Volker Roth 0003 — Philipps University of Marburg, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j23]Monika Nagy-Huber, Volker Roth:
Physics-informed boundary integral networks (PIBI-Nets): A data-driven approach for solving partial differential equations. J. Comput. Sci. 81: 102355 (2024) - [c54]Fabricio Arend Torres, Marcello Massimo Negri, Marco Inversi, Jonathan Aellen, Volker Roth:
Lagrangian Flow Networks for Conservation Laws. ICLR 2024 - [i26]Marcello Massimo Negri, Jonathan Aellen, Volker Roth:
Injective Flows for parametric hypersurfaces. CoRR abs/2406.09116 (2024) - 2023
- [c53]Marcello Massimo Negri, Fabricio Arend Torres, Volker Roth:
Conditional Matrix Flows for Gaussian Graphical Models. NeurIPS 2023 - [i25]Fabricio Arend Torres, Marcello Massimo Negri, Marco Inversi, Jonathan Aellen, Volker Roth:
Lagrangian Flow Networks for Conservation Laws. CoRR abs/2305.16846 (2023) - [i24]Marcello Massimo Negri, Fabricio Arend Torres, Volker Roth:
Conditional Matrix Flows for Gaussian Graphical Models. CoRR abs/2306.07255 (2023) - [i23]Monika Nagy-Huber, Volker Roth:
Physics-Informed Boundary Integral Networks (PIBI-Nets): A Data-Driven Approach for Solving Partial Differential Equations. CoRR abs/2308.09571 (2023) - 2022
- [c52]Maxim Samarin, Volker Roth, David Belius:
Feature learning and random features in standard finite-width convolutional neural networks: An empirical study. UAI 2022: 1718-1727 - [i22]Vitali Nesterov, Fabricio Arend Torres, Monika Nagy-Huber, Maxim Samarin, Volker Roth:
Learning Invariances with Generalised Input-Convex Neural Networks. CoRR abs/2204.07009 (2022) - [i21]Fabricio Arend Torres, Marcello Massimo Negri, Monika Nagy-Huber, Maxim Samarin, Volker Roth:
Truly Mesh-free Physics-Informed Neural Networks. CoRR abs/2206.01545 (2022) - 2021
- [j22]Sebastian Mathias Keller, Maxim Samarin, Fabricio Arend Torres, Mario Wieser, Volker Roth:
Learning Extremal Representations with Deep Archetypal Analysis. Int. J. Comput. Vis. 129(4): 805-820 (2021) - [j21]Mike Wu, Sonali Parbhoo, Michael C. Hughes, Volker Roth, Finale Doshi-Velez:
Optimizing for Interpretability in Deep Neural Networks with Tree Regularization. J. Artif. Intell. Res. 72: 1-37 (2021) - [c51]Maxim Samarin, Vitali Nesterov, Mario Wieser, Aleksander Wieczorek, Sonali Parbhoo, Volker Roth:
Learning Conditional Invariance Through Cycle Consistency. GCPR 2021: 376-391 - [i20]Maxim Samarin, Vitali Nesterov, Mario Wieser, Aleksander Wieczorek, Sonali Parbhoo, Volker Roth:
Learning Conditional Invariance through Cycle Consistency. CoRR abs/2111.13185 (2021) - 2020
- [j20]Aleksander Wieczorek, Volker Roth:
On the Difference between the Information Bottleneck and the Deep Information Bottleneck. Entropy 22(2): 131 (2020) - [j19]Sonali Parbhoo, Mario Wieser, Aleksander Wieczorek, Volker Roth:
Information Bottleneck for Estimating Treatment Effects with Systematically Missing Covariates. Entropy 22(4): 389 (2020) - [j18]Maxim Samarin, Lauren Zweifel, Volker Roth, Christine Alewell:
Identifying Soil Erosion Processes in Alpine Grasslands on Aerial Imagery with a U-Net Convolutional Neural Network. Remote. Sens. 12(24): 4149 (2020) - [c50]Mike Wu, Sonali Parbhoo, Michael C. Hughes, Ryan Kindle, Leo A. Celi, Maurizio Zazzi, Volker Roth, Finale Doshi-Velez:
Regional Tree Regularization for Interpretability in Deep Neural Networks. AAAI 2020: 6413-6421 - [c49]Sonali Parbhoo, Mario Wieser, Volker Roth, Finale Doshi-Velez:
Transfer Learning from Well-Curated to Less-Resourced Populations with HIV. MLHC 2020: 589-609 - [c48]Mario Wieser, Sonali Parbhoo, Aleksander Wieczorek, Volker Roth:
Inverse Learning of Symmetries. NeurIPS 2020 - [i19]Sebastian Mathias Keller, Maxim Samarin, Fabricio Arend Torres, Mario Wieser, Volker Roth:
Learning Extremal Representations with Deep Archetypal Analysis. CoRR abs/2002.00815 (2020) - [i18]Mario Wieser, Sonali Parbhoo, Aleksander Wieczorek, Volker Roth:
Inverse Learning of Symmetry Transformations. CoRR abs/2002.02782 (2020) - [i17]Maxim Samarin, Volker Roth, David Belius:
On the Empirical Neural Tangent Kernel of Standard Finite-Width Convolutional Neural Network Architectures. CoRR abs/2006.13645 (2020) - [i16]Vitali Nesterov, Mario Wieser, Volker Roth:
3DMolNet: A Generative Network for Molecular Structures. CoRR abs/2010.06477 (2020)
2010 – 2019
- 2019
- [j17]Aleksander Wieczorek, Volker Roth:
Information Theoretic Causal Effect Quantification. Entropy 21(10): 975 (2019) - [c47]Adam Kortylewski, Aleksander Wieczorek, Mario Wieser, Clemens Blumer, Sonali Parbhoo, Andreas Morel-Forster, Volker Roth, Thomas Vetter:
Greedy Structure Learning of Hierarchical Compositional Models. CVPR 2019: 11612-11621 - [c46]Sebastian Mathias Keller, Maxim Samarin, Mario Wieser, Volker Roth:
Deep Archetypal Analysis. GCPR 2019: 171-185 - [i15]Sebastian Mathias Keller, Maxim Samarin, Mario Wieser, Volker Roth:
Deep Archetypal Analysis. CoRR abs/1901.10799 (2019) - [i14]Dmytro Shulga, Oleksii Morozov, Volker Roth, Felix Friedrich, Patrick R. Hunziker:
Tensor B-Spline Numerical Methods for PDEs: a High-Performance Alternative to FEM. CoRR abs/1904.03057 (2019) - [i13]Mike Wu, Sonali Parbhoo, Michael C. Hughes, Ryan Kindle, Leo A. Celi, Maurizio Zazzi, Volker Roth, Finale Doshi-Velez:
Regional Tree Regularization for Interpretability in Black Box Models. CoRR abs/1908.04494 (2019) - [i12]Mike Wu, Sonali Parbhoo, Michael C. Hughes, Volker Roth, Finale Doshi-Velez:
Optimizing for Interpretability in Deep Neural Networks with Tree Regularization. CoRR abs/1908.05254 (2019) - [i11]Aleksander Wieczorek, Volker Roth:
On the Difference Between the Information Bottleneck and the Deep Information Bottleneck. CoRR abs/1912.13480 (2019) - 2018
- [c45]Mike Wu, Michael C. Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, Finale Doshi-Velez:
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability. AAAI 2018: 1670-1678 - [c44]Sebastian Mathias Keller, Damian Murezzan, Volker Roth:
Invexity Preserving Transformations for Projection Free Optimization with Sparsity Inducing Non-convex Constraints. GCPR 2018: 682-697 - [c43]Aleksander Wieczorek, Mario Wieser, Damian Murezzan, Volker Roth:
Learning Sparse Latent Representations with the Deep Copula Information Bottleneck. ICLR (Poster) 2018 - [i10]Aleksander Wieczorek, Mario Wieser, Damian Murezzan, Volker Roth:
Learning Sparse Latent Representations with the Deep Copula Information Bottleneck. CoRR abs/1804.06216 (2018) - [i9]Sonali Parbhoo, Mario Wieser, Volker Roth:
Causal Deep Information Bottleneck. CoRR abs/1807.02326 (2018) - [i8]Adam Kortylewski, Mario Wieser, Andreas Morel-Forster, Aleksander Wieczorek, Sonali Parbhoo, Volker Roth, Thomas Vetter:
Informed MCMC with Bayesian Neural Networks for Facial Image Analysis. CoRR abs/1811.07969 (2018) - [i7]Sonali Parbhoo, Mario Wieser, Volker Roth:
Estimating Causal Effects With Partial Covariates For Clinical Interpretability. CoRR abs/1811.10347 (2018) - [i6]Sebastian Mathias Keller, Maxim Samarin, Antonia Meyer, Vitalii Kosak, Ute Gschwandtner, Peter Fuhr, Volker Roth:
Computational EEG in Personalized Medicine: A study in Parkinson's Disease. CoRR abs/1812.06594 (2018) - 2017
- [c42]Sonali Parbhoo, Jasmina Bogojeska, Maurizio Zazzi, Volker Roth, Finale Doshi-Velez:
Combining Kernel and Model Based Learning for HIV Therapy Selection. CRI 2017 - [e1]Volker Roth, Thomas Vetter:
Pattern Recognition - 39th German Conference, GCPR 2017, Basel, Switzerland, September 12-15, 2017, Proceedings. Lecture Notes in Computer Science 10496, Springer 2017, ISBN 978-3-319-66708-9 [contents] - [i5]Mike Wu, Michael C. Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, Finale Doshi-Velez:
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability. CoRR abs/1711.06178 (2017) - 2016
- [c41]Dinu Kaufmann, Sonali Parbhoo, Aleksander Wieczorek, Sebastian Keller, David Adametz, Volker Roth:
Bayesian Markov Blanket Estimation. AISTATS 2016: 333-341 - [c40]Bernhard Egger, Dinu Kaufmann, Sandro Schönborn, Volker Roth, Thomas Vetter:
Copula Eigenfaces - Semiparametric Principal Component Analysis for Facial Appearance Modeling. VISIGRAPP (1: GRAPP) 2016: 50-58 - [c39]Bernhard Egger, Dinu Kaufmann, Sandro Schönborn, Volker Roth, Thomas Vetter:
Copula Eigenfaces with Attributes: Semiparametric Principal Component Analysis for a Combined Color, Shape and Attribute Model. VISIGRAPP (Revised Selected Papers) 2016: 95-112 - 2015
- [j16]Julia E. Vogt, Marius Kloft, Stefan Stark, Sudhir Raman, Sandhya Prabhakaran, Volker Roth, Gunnar Rätsch:
Probabilistic clustering of time-evolving distance data. Mach. Learn. 100(2-3): 635-654 (2015) - [c38]Dinu Kaufmann, Sebastian Keller, Volker Roth:
Copula Archetypal Analysis. GCPR 2015: 117-128 - [i4]Julia E. Vogt, Marius Kloft, Stefan Stark, Sudhir Raman, Sandhya Prabhakaran, Volker Roth, Gunnar Rätsch:
Probabilistic Clustering of Time-Evolving Distance Data. CoRR abs/1504.03701 (2015) - [i3]Dinu Kaufmann, Sonali Parbhoo, Aleksander Wieczorek, Sebastian Keller, David Adametz, Volker Roth:
Bayesian Markov Blanket Estimation. CoRR abs/1510.01485 (2015) - 2014
- [j15]Sandhya Prabhakaran, Mélanie Rey, Osvaldo Zagordi, Niko Beerenwinkel, Volker Roth:
HIV Haplotype Inference Using a Propagating Dirichlet Process Mixture Model. IEEE ACM Trans. Comput. Biol. Bioinform. 11(1): 182-191 (2014) - [c37]David Adametz, Mélanie Rey, Volker Roth:
Information Bottleneck for Pathway-Centric Gene Expression Analysis. GCPR 2014: 81-91 - [c36]Mélanie Rey, Volker Roth, Thomas J. Fuchs:
Sparse meta-Gaussian information bottleneck. ICML 2014: 910-918 - [c35]David Adametz, Volker Roth:
Distance-Based Network Recovery under Feature Correlation. NIPS 2014: 775-783 - 2013
- [j14]Armin Töpfer, Osvaldo Zagordi, Sandhya Prabhakaran, Volker Roth, Eran Halperin, Niko Beerenwinkel:
Probabilistic Inference of Viral Quasispecies Subject to Recombination. J. Comput. Biol. 20(2): 113-123 (2013) - [j13]Sandhya Prabhakaran, David Adametz, Karin J. Metzner, Alexander Böhm, Volker Roth:
Recovering networks from distance data. Mach. Learn. 92(2-3): 251-283 (2013) - [p2]Volker Roth, Thomas J. Fuchs, Julia E. Vogt, Sandhya Prabhakaran, Joachim M. Buhmann:
Structure Preserving Embedding of Dissimilarity Data. Similarity-Based Pattern Analysis and Recognition 2013: 157-177 - [p1]Peter J. Schüffler, Thomas J. Fuchs, Cheng Soon Ong, Volker Roth, Joachim M. Buhmann:
Automated Analysis of Tissue Micro-Array Images on the Example of Renal Cell Carcinoma. Similarity-Based Pattern Analysis and Recognition 2013: 219-245 - 2012
- [c34]Sudhir Raman, Volker Roth:
Sparse Point Estimation for Bayesian Regression via Simulated Annealing. DAGM/OAGM Symposium 2012: 317-326 - [c33]Sandhya Prabhakaran, Sudhir Raman, Julia E. Vogt, Volker Roth:
Automatic Model Selection in Archetype Analysis. DAGM/OAGM Symposium 2012: 458-467 - [c32]Mélanie Rey, Volker Roth:
Copula Mixture Model for Dependency-seeking Clustering. ICML 2012 - [c31]Julia E. Vogt, Volker Roth:
A Complete Analysis of the l_1, p Group-Lasso. ICML 2012 - [c30]Mélanie Rey, Volker Roth:
Meta-Gaussian Information Bottleneck. NIPS 2012: 1925-1933 - [c29]Osvaldo Zagordi, Armin Töpfer, Sandhya Prabhakaran, Volker Roth, Eran Halperin, Niko Beerenwinkel:
Probabilistic Inference of Viral Quasispecies Subject to Recombination. RECOMB 2012: 342-354 - [c28]Sandhya Prabhakaran, Karin J. Metzner, Alexander Böhm, Volker Roth:
Recovering Networks from Distance Data. ACML 2012: 349-364 - [i2]Julia E. Vogt, Volker Roth:
A Complete Analysis of the l_1,p Group-Lasso. CoRR abs/1206.4632 (2012) - [i1]Mélanie Rey, Volker Roth:
Copula Mixture Model for Dependency-seeking Clustering. CoRR abs/1206.6433 (2012) - 2011
- [c27]David Adametz, Volker Roth:
Bayesian Partitioning of Large-Scale Distance Data. NIPS 2011: 1368-1376 - 2010
- [j12]Sudhir Raman, Thomas J. Fuchs, Peter J. Wild, Edgar Dahl, Joachim M. Buhmann, Volker Roth:
Infinite mixture-of-experts model for sparse survival regression with application to breast cancer. BMC Bioinform. 11(S-8): S8 (2010) - [j11]Osvaldo Zagordi, Lukas Geyrhofer, Volker Roth, Niko Beerenwinkel:
Deep Sequencing of a Genetically Heterogeneous Sample: Local Haplotype Reconstruction and Read Error Correction. J. Comput. Biol. 17(3): 417-428 (2010) - [c26]Peter J. Schüffler, Thomas J. Fuchs, Cheng Soon Ong, Volker Roth, Joachim M. Buhmann:
Computational TMA Analysis and Cell Nucleus Classification of Renal Cell Carcinoma. DAGM-Symposium 2010: 202-211 - [c25]Julia E. Vogt, Volker Roth:
The Group-Lasso: l1, INFINITY Regularization versus l1, 2 Regularization. DAGM-Symposium 2010: 252-261 - [c24]Julia E. Vogt, Sandhya Prabhakaran, Thomas J. Fuchs, Volker Roth:
The Translation-invariant Wishart-Dirichlet Process for Clustering Distance Data. ICML 2010: 1111-1118
2000 – 2009
- 2009
- [j10]Bernd Fischer, Volker Roth, Joachim M. Buhmann:
Adaptive bandwidth selection for biomarker discovery in mass spectrometry. Artif. Intell. Medicine 45(2-3): 207-214 (2009) - [c23]Sudhir Raman, Volker Roth:
Sparse Bayesian Regression for Grouped Variables in Generalized Linear Models. DAGM-Symposium 2009: 242-251 - [c22]Sudhir Raman, Thomas J. Fuchs, Peter J. Wild, Edgar Dahl, Volker Roth:
The Bayesian group-Lasso for analyzing contingency tables. ICML 2009: 881-888 - [c21]Osvaldo Zagordi, Lukas Geyrhofer, Volker Roth, Niko Beerenwinkel:
Deep Sequencing of a Genetically Heterogeneous Sample: Local Haplotype Reconstruction and Read Error Correction. RECOMB 2009: 271-284 - 2008
- [c20]Volker Roth, Bernd Fischer:
The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms. ICML 2008: 848-855 - 2007
- [j9]Bernd Fischer, Volker Roth, Joachim M. Buhmann:
Time-series alignment by non-negative multiple generalized canonical correlation analysis. BMC Bioinform. 8(S-10) (2007) - [j8]Volker Roth, Bernd Fischer:
Improved functional prediction of proteins by learning kernel combinations in multilabel settings. BMC Bioinform. 8(S-2) (2007) - [c19]Volker Roth, Bernd Fischer:
The kernelHMM : Learning Kernel Combinations in Structured Output Domains. DAGM-Symposium 2007: 436-445 - [c18]Bernd Fischer, Volker Roth, Joachim M. Buhmann:
Time-Series Alignment by Non-negative Multiple Generalized Canonical Correlation Analysis. WILF 2007: 505-511 - 2006
- [j7]Volker Roth:
Kernel Fisher Discriminants for Outlier Detection. Neural Comput. 18(4): 942-960 (2006) - [j6]Julian Laub, Volker Roth, Joachim M. Buhmann, Klaus-Robert Müller:
On the information and representation of non-Euclidean pairwise data. Pattern Recognit. 39(10): 1815-1826 (2006) - [c17]Volker Roth, Björn Ommer:
Exploiting Low-Level Image Segmentation for Object Recognition. DAGM-Symposium 2006: 11-20 - [c16]Bernd Fischer, Jonas Grossmann, Volker Roth, Wilhelm Gruissem, Sacha Baginsky, Joachim M. Buhmann:
Semi-supervised LC/MS alignment for differential proteomics. ISMB (Supplement of Bioinformatics) 2006: 132-140 - 2004
- [j5]Tilman Lange, Volker Roth, Mikio L. Braun, Joachim M. Buhmann:
Stability-Based Validation of Clustering Solutions. Neural Comput. 16(6): 1299-1323 (2004) - [j4]Volker Roth, Tilman Lange:
Bayesian class discovery in microarray datasets. IEEE Trans. Biomed. Eng. 51(5): 707-718 (2004) - [j3]Volker Roth:
The generalized LASSO. IEEE Trans. Neural Networks 15(1): 16-28 (2004) - [c15]Volker Roth, Tilman Lange:
Adaptive Feature Selection in Image Segmentation. DAGM-Symposium 2004: 9-17 - [c14]Bernd Fischer, Volker Roth, Joachim M. Buhmann, Jonas Grossmann, Sacha Baginsky, Wilhelm Gruissem, Franz F. Roos, Peter Widmayer:
A Hidden Markov Model for de Novo Peptide Sequencing. NIPS 2004: 457-464 - [c13]Volker Roth:
Outlier Detection with One-class Kernel Fisher Discriminants. NIPS 2004: 1169-1176 - 2003
- [j2]Volker Roth, Julian Laub, Motoaki Kawanabe, Joachim M. Buhmann:
Optimal Cluster Preserving Embedding of Nonmetric Proximity Data. IEEE Trans. Pattern Anal. Mach. Intell. 25(12): 1540-1551 (2003) - [c12]Bernd Fischer, Volker Roth, Joachim M. Buhmann:
Clustering with the Connectivity Kernel. NIPS 2003: 89-96 - [c11]Volker Roth, Tilman Lange:
Feature Selection in Clustering Problems. NIPS 2003: 473-480 - 2002
- [c10]Volker Roth, Tilman Lange, Mikio L. Braun, Joachim M. Buhmann:
A Resampling Approach to Cluster Validation. COMPSTAT 2002: 123-128 - [c9]Volker Roth, Mikio L. Braun, Tilman Lange, Joachim M. Buhmann:
Stability-Based Model Order Selection in Clustering with Applications to Gene Expression Data. ICANN 2002: 607-612 - [c8]Tilman Lange, Mikio L. Braun, Volker Roth, Joachim M. Buhmann:
Stability-Based Model Selection. NIPS 2002: 617-624 - [c7]Volker Roth, Julian Laub, Joachim M. Buhmann, Klaus-Robert Müller:
Going Metric: Denoising Pairwise Data. NIPS 2002: 817-824 - 2001
- [b1]Volker Roth:
Kernel methods for regression and classification. University of Bonn, Germany, VDI-Verlag 2001, ISBN 978-3-89863-051-1, pp. 1-194 - [c6]Volker Roth, Koji Tsuda:
Pairwise Coupling for Machine Recognition of Hand-Printed Japanese Characters. CVPR (1) 2001: 1120-1125 - [c5]Volker Roth:
Probabilistic Discriminative Kernel Classifiers for Multi-class Problems. DAGM-Symposium 2001: 246-253 - [c4]Volker Roth:
Sparse Kernel Regressors. ICANN 2001: 339-346 - 2000
- [j1]Volker Roth, Artur Pogoda de la Vega, Volker Steinhage, Stefan Schröder:
Automatisierte Artenbestimmung von Insekten durch Bildanalyse. Künstliche Intell. 14(1): 48-49 (2000)
1990 – 1999
- 1999
- [c3]Volker Roth, Volker Steinhage, Stefan Schröder, Armin B. Cremers, Dieter Wittmann:
Pattern Recognition Combining De-noising and Linear Discriminant Analysis within a Real World Application. CAIP 1999: 251-258 - [c2]Volker Roth, Artur Pogoda de la Vega, Volker Steinhage, Stefan Schröder:
Pattern Recognition Combining Feature- and Pixel-Based Classification Within a Real World Application. DAGM-Symposium 1999: 120-129 - [c1]Volker Roth, Volker Steinhage:
Nonlinear Discriminant Analysis Using Kernel Functions. NIPS 1999: 568-574
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-07-30 20:46 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint