


default search action
38th UAI 2022: Eindhoven, The Netherlands
- James Cussens, Kun Zhang:

Uncertainty in Artificial Intelligence, Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI 2022, 1-5 August 2022, Eindhoven, The Netherlands. Proceedings of Machine Learning Research 180, PMLR 2022 - Kenshi Abe, Mitsuki Sakamoto, Atsushi Iwasaki:

Mutation-driven follow the regularized leader for last-iterate convergence in zero-sum games. 1-10 - Sakshi Agarwal, Kalev Kask, Alexander Ihler, Rina Dechter:

NeuroBE: Escalating neural network approximations of Bucket Elimination. 11-21 - Mridul Agarwal, Qinbo Bai, Vaneet Aggarwal:

Regret guarantees for model-based reinforcement learning with long-term average constraints. 22-31 - Andrea Agiollo, Andrea Omicini:

GNN2GNN: Graph neural networks to generate neural networks. 32-42 - Kareem Ahmed, Eric Wang, Kai-Wei Chang, Guy Van den Broeck:

Neuro-symbolic entropy regularization. 43-53 - Ragib Ahsan, Zahra Fatemi, David Arbour, Elena Zheleva:

Non-parametric inference of relational dependence. 54-63 - Motasem Alfarra, Adel Bibi, Philip H. S. Torr, Bernard Ghanem:

Data dependent randomized smoothing. 64-74 - Tahar Allouche, Jérôme Lang, Florian Yger:

Multi-winner approval voting goes epistemic. 75-84 - Roman Andriushchenko, Milan Ceska, Sebastian Junges

, Joost-Pieter Katoen:
Inductive synthesis of finite-state controllers for POMDPs. 85-95 - Charles K. Assaad

, Emilie Devijver, Éric Gaussier:
Discovery of extended summary graphs in time series. 96-106 - Andrea Baisero, Brett Daley, Christopher Amato:

Asymmetric DQN for partially observable reinforcement learning. 107-117 - Tianshu Bao, Shengyu Chen, Taylor T. Johnson

, Peyman Givi, Shervin Sammak, Xiaowei Jia:
Physics guided neural networks for spatio-temporal super-resolution of turbulent flows. 118-128 - Yajie Bao, Weidong Liu, Xiaojun Mao, Weijia Xiong:

Byzantine-tolerant distributed multiclass sparse linear discriminant analysis. 129-138 - Sergey Bartunov, Fabian B. Fuchs, Timothy P. Lillicrap:

Equilibrium aggregation: encoding sets via optimization. 139-149 - Tsviel Ben Shabat, Reshef Meir, David Azriel:

Empirical bayes approach to truth discovery problems. 150-158 - Petra Berenbrink, Colin Cooper, Cristina Gava, David Kohan Marzagão, Frederik Mallmann-Trenn, Tomasz Radzik:

On early extinction and the effect of travelling in the SIR model. 159-169 - Michel Besserve, Bernhard Schölkopf:

Learning soft interventions in complex equilibrium systems. 170-180 - Sanjay P. Bhat, Chaitanya Amballa:

Identifying near-optimal decisions in linear-in-parameter bandit models with continuous decision sets. 181-190 - Sujay Bhatt, Guanhua Fang, Ping Li:

Offline change detection under contamination. 191-201 - Rohit Bhattacharya, Razieh Nabi:

On testability of the front-door model via Verma constraints. 202-212 - Tineke Blom, Joris M. Mooij:

Robustness of model predictions under extension. 213-222 - Trevor Bonjour

, Vaneet Aggarwal, Bharat K. Bhargava:
Information theoretic approach to detect collusion in multi-agent games. 223-232 - Tanya Braun, Marcel Gehrke, Florian Lau, Ralf Möller:

Lifting in multi-agent systems under uncertainty. 233-243 - Tomás Brázdil, David Klaska, Antonín Kucera, Vít Musil, Petr Novotný, Vojtech Rehák:

On-the-fly adaptation of patrolling strategies in changing environments. 244-254 - Ido Bronstein, Alon Brutzkus, Amir Globerson:

On the inductive bias of neural networks for learning read-once DNFs. 255-265 - Difeng Cai

, Yuliang Ji, Huan He, Qiang Ye, Yuanzhe Xi:
AUTM flow: atomic unrestricted time machine for monotonic normalizing flows. 266-274 - Yiting Cao, Chao Lan:

Active approximately metric-fair learning. 275-285 - Paidamoyo Chapfuwa, Sherri Rose, Lawrence Carin, Edward Meeds, Ricardo Henao:

Capturing actionable dynamics with structured latent ordinary differential equations. 286-295 - Kamalika Chaudhuri, Chuan Guo, Mike Rabbat:

Privacy-aware compression for federated data analysis. 296-306 - Omar Chehab

, Alexandre Gramfort, Aapo Hyvärinen:
The optimal noise in noise-contrastive learning is not what you think. 307-316 - Mengjing Chen, Pingzhong Tang, Zihe Wang, Shenke Xiao, Xiwang Yang:

A competitive analysis of online failure-aware assignment. 317-325 - John Chen, Samarth Sinha, Anastasios Kyrillidis:

Stackmix: a complementary mix algorithm. 326-335 - Xinyuan Chen, Zhongmei Zhou, Meichun Gao, Daya Shi, Mohd Nizam Husen:

Knowledge representation combining quaternion path integration and depth-wise atrous circular convolution. 336-345 - Qi Chen, Kai Liu, Ruilong Yao, Hu Ding:

Sublinear time algorithms for greedy selection in high dimensions. 346-356 - Mayee F. Chen, Daniel Y. Fu, Dyah Adila, Michael Zhang, Frederic Sala, Kayvon Fatahalian, Christopher Ré:

Shoring up the foundations: fusing model embeddings and weak supervision. 357-367 - Yizuo Chen, Adnan Darwiche:

On the definition and computation of causal treewidth. 368-377 - Jinglin Chen, Nan Jiang:

Offline reinforcement learning under value and density-ratio realizability: The power of gaps. 378-388 - Runxiang Cheng, Gargi Balasubramaniam, Yifei He, Yao-Hung Hubert Tsai, Han Zhao:

Greedy modality selection via approximate submodular maximization. 389-399 - Yoichi Chikahara, Makoto Yamada, Hisashi Kashima:

Feature selection for discovering distributional treatment effect modifiers. 400-410 - Kwanghee Choi, Siyeong Lee:

Combating the instability of mutual information-based losses via regularization. 411-421 - Gabriella Chouraqui, Liron Cohen, Gil Einziger, Liel Leman:

A geometric method for improved uncertainty estimation in real-time. 422-432 - Sewhan Chun, Jae Young Lee, Junmo Kim:

Cyclic test time augmentation with entropy weight method. 433-442 - Tom Claassen, Ioan Gabriel Bucur:

Greedy equivalence search in the presence of latent confounders. 443-452 - Nina L. Corvelo Benz, Manuel Gomez Rodriguez:

Counterfactual inference of second Opinions. 453-463 - Zijun Cui, Hanjing Wang, Tian Gao, Kartik Talamadupula, Qiang Ji:

Variational message passing neural network for Maximum-A-Posteriori (MAP) inference. 464-474 - Zhongxiang Dai, Yizhou Chen, Haibin Yu, Bryan Kian Hsiang Low, Patrick Jaillet:

On provably robust meta-Bayesian optimization. 475-485 - Shantanu Das, Swapnil Dhamal, Ganesh Ghalme, Shweta Jain, Sujit Gujar:

Individual fairness in feature-based pricing for monopoly markets. 486-495 - Rudrajit Das, Anish Acharya, Abolfazl Hashemi, Sujay Sanghavi, Inderjit S. Dhillon, Ufuk Topcu:

Faster non-convex federated learning via global and local momentum. 496-506 - Samuel Daulton, David Eriksson, Maximilian Balandat, Eytan Bakshy:

Multi-objective Bayesian optimization over high-dimensional search spaces. 507-517 - Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer, Yoshua Bengio:

Bayesian structure learning with generative flow networks. 518-528 - Grace Deng, David S. Matteson:

Bayesian spillover graphs for dynamic networks. 529-538 - Christophe Denis, Charlotte Dion-Blanc, Laure Sansonnet:

Multiclass classification for Hawkes processes. 539-547 - Eyke Hüllermeier, Sébastien Destercke, Mohammad Hossein Shaker:

Quantification of Credal Uncertainty in Machine Learning: A Critical Analysis and Empirical Comparison. 548-557 - Anthony DiGiovanni, Ambuj Tewari:

Balancing adaptability and non-exploitability in repeated games. 559-568 - Or Dinari, Oren Freifeld:

Variational- and metric-based deep latent space for out-of-distribution detection. 569-578 - Or Dinari, Oren Freifeld:

Revisiting DP-Means: fast scalable algorithms via parallelism and delayed cluster creation. 579-588 - Fan Ding, Yexiang Xue:

X-MEN: guaranteed XOR-maximum entropy constrained inverse reinforcement learning. 589-598 - Punit Pankaj Dubey, Bhisham Dev Verma, Rameshwar Pratap, Keegan Kang

:
Improving sign-random-projection via count sketch. 599-609 - Chen Dun, Cameron R. Wolfe, Christopher M. Jermaine, Anastasios Kyrillidis:

ResIST: Layer-wise decomposition of ResNets for distributed training. 610-620 - Varun Embar, Sriram Srinivasan, Lise Getoor:

Learning explainable templated graphical models. 621-630 - Hannes Eriksson

, Debabrota Basu, Mina Alibeigi, Christos Dimitrakakis:
SENTINEL: taming uncertainty with ensemble based distributional reinforcement learning. 631-640 - Akram Erraqabi, Marlos C. Machado

, Mingde Zhao, Sainbayar Sukhbaatar, Alessandro Lazaric, Ludovic Denoyer, Yoshua Bengio:
Temporal abstractions-augmented temporally contrastive learning: An alternative to the Laplacian in RL. 641-651 - John Isak Texas Falk

, Carlo Ciliberto, Massimiliano Pontil:
Implicit kernel meta-learning using kernel integral forms. 652-662 - Yassir Fathullah, Mark J. F. Gales:

Self-distribution distillation: efficient uncertainty estimation. 663-673 - Jean Feng, Gene Pennello, Nicholas Petrick, Berkman Sahiner, Romain Pirracchio, Alexej Gossmann:

Sequential algorithmic modification with test data reuse. 674-684 - Sahil Garg, Umang Gupta, Yu Chen, Syamantak Datta Gupta, Yeshaya Adler, Anderson Schneider, Yuriy Nevmyvaka:

Estimating transfer entropy under long ranged dependencies. 685-695 - Sahra Ghalebikesabi, Harry Wilde, Jack Jewson, Arnaud Doucet, Sebastian J. Vollmer, Chris C. Holmes:

Mitigating statistical bias within differentially private synthetic data. 696-705 - Supriyo Ghosh, Laura Wynter, Shiau Hong Lim, Duc Thien Nguyen:

Neural-progressive hedging: Enforcing constraints in reinforcement learning with stochastic programming. 707-717 - Misha Glazunov, Apostolis Zarras:

Do Bayesian variational autoencoders know what they don't know? 718-727 - Jinwoo Go, Tobin Isaac:

Robust expected information gain for optimal Bayesian experimental design using ambiguity sets. 728-737 - Martin Gubri, Maxime Cordy, Mike Papadakis, Yves Le Traon, Koushik Sen:

Efficient and transferable adversarial examples from bayesian neural networks. 738-748 - Soumyajit Gupta, Gurpreet Singh, Raghu Bollapragada, Matthew Lease:

Learning a neural Pareto manifold extractor with constraints. 749-758 - Ali Hasan, Khalil Elkhalil, Yuting Ng, João M. Pereira, Sina Farsiu, Jose H. Blanchet, Vahid Tarokh:

Modeling extremes with d-max-decreasing neural networks. 759-768 - Tobias Hatt, Daniel Tschernutter, Stefan Feuerriegel:

Generalizing off-policy learning under sample selection bias. 769-779 - Keyang He, Prashant Doshi, Bikramjit Banerjee:

Reinforcement learning in many-agent settings under partial observability. 780-789 - Pashupati Hegde, Çagatay Yildiz, Harri Lähdesmäki, Samuel Kaski, Markus Heinonen:

Variational multiple shooting for Bayesian ODEs with Gaussian processes. 790-799 - Margot Herin, Patrice Perny, Nataliya Sokolovska:

Learning sparse representations of preferences within Choquet expected utility theory. 800-810 - Gaurush Hiranandani, Jatin Mathur

, Harikrishna Narasimhan, Oluwasanmi Koyejo:
Quadratic metric elicitation for fairness and beyond. 811-821 - Marius Hobbhahn, Agustinus Kristiadi, Philipp Hennig:

Fast predictive uncertainty for classification with Bayesian deep networks. 822-832 - Haruo Hosoya:

CIGMO: Categorical invariant representations in a deep generative framework. 833-843 - Bingshan Hu, Nidhi Hegde:

Near-optimal Thompson sampling-based algorithms for differentially private stochastic bandits. 844-852 - Kexin Huang, Vishnu Sresht, Brajesh K. Rai, Mykola Bordyuh:

Uncertainty-aware pseudo-labeling for quantum calculations. 853-862 - Zhipeng Huang, Hadeel Soliman, Subhadeep Paul, Kevin S. Xu:

A mutually exciting latent space Hawkes process model for continuous-time networks. 863-873 - Antti Hyttinen, Vitória Barin Pacela

, Aapo Hyvärinen:
Binary independent component analysis: a non-stationarity-based approach. 874-884 - Jacob Imola, Shiva Prasad Kasiviswanathan, Stephen White, Abhinav Aggarwal, Nathanael Teissier:

Balancing utility and scalability in metric differential privacy. 885-894 - Arushi Jain, Sharan Vaswani, Reza Babanezhad, Csaba Szepesváari, Doina Precup:

Towards painless policy optimization for constrained MDPs. 895-905 - Divyansh Jhunjhunwala, Pranay Sharma, Aushim Nagarkatti, Gauri Joshi:

Fedvarp: Tackling the variance due to partial client participation in federated learning. 906-916 - Hongwei Jin, Zishun Yu, Xinhua Zhang:

Orthogonal Gromov-Wasserstein discrepancy with efficient lower bound. 917-927 - Haydn Thomas Jones, Jacob M. Springer, Garrett T. Kenyon, Juston S. Moore:

If you've trained one you've trained them all: inter-architecture similarity increases with robustness. 928-937 - Anirudh Kakarlapudi, Gayathri Anil, Adam Eck, Prashant Doshi, Leen-Kiat Soh:

Decision-theoretic planning with communication in open multiagent systems. 938-948 - Krishna Chaitanya Kalagarla, Dhruva Kartik, Dongming Shen, Rahul Jain, Ashutosh Nayyar, Pierluigi Nuzzo:

Optimal control of partially observable Markov decision processes with finite linear temporal logic constraints. 949-958 - Vathy M. Kamulete:

Test for non-negligible adverse shifts. 959-968 - Adam Karczmarz, Tomasz P. Michalak, Anish Mukherjee, Piotr Sankowski, Piotr Wygocki:

Improved feature importance computation for tree models based on the Banzhaf value. 969-979 - Ian A. Kash, Zhongkai Wen, Lenore D. Zuck:

Dynamic relocation in ridesharing via fixpoint construction. 980-989 - Jackson A. Killian, Lily Xu, Arpita Biswas, Milind Tambe:

Restless and uncertain: Robust policies for restless bandits via deep multi-agent reinforcement learning. 990-1000 - Jungtaek Kim, Seungjin Choi, Minsu Cho:

Combinatorial Bayesian optimization with random mapping functions to convex polytopes. 1001-1011 - Klim Kireev, Maksym Andriushchenko, Nicolas Flammarion:

On the effectiveness of adversarial training against common corruptions. 1012-1021 - Yaroslav Kivva, Ehsan Mokhtarian

, Jalal Etesami, Negar Kiyavash:
Revisiting the general identifiability problem. 1022-1030 - Thomas Krak:

Hitting times for continuous-time imprecise-Markov chains. 1031-1040 - Ananya Kumar, Tengyu Ma, Percy Liang, Aditi Raghunathan:

Calibrated ensembles can mitigate accuracy tradeoffs under distribution shift. 1041-1051 - Wai-Yin Lam, Bryan Andrews, Joseph D. Ramsey:

Greedy relaxations of the sparsest permutation algorithm. 1052-1062 - Richard D. Lange, Ari S. Benjamin, Ralf M. Haefner, Xaq Pitkow:

Interpolating between sampling and variational inference with infinite stochastic mixtures. 1063-1073 - Hyemin Lee, Daijin Kim:

Systematized event-aware learning for multi-object tracking. 1074-1084 - Harald Leisenberger, Franz Pernkopf, Christian Knoll:

Fixing the Bethe approximation: How structural modifications in a graph improve belief propagation. 1085-1095 - Alexander K. Lew, Marco F. Cusumano-Towner, Vikash K. Mansinghka:

Recursive Monte Carlo and variational inference with auxiliary variables. 1096-1106 - Zun Li, Feiran Jia, Aditya Mate, Shahin Jabbari, Mithun Chakraborty, Milind Tambe, Yevgeniy Vorobeychik:

Solving structured hierarchical games using differential backward induction. 1107-1117 - Wenjie Li

, Wasif Naeem, Jia Liu, Dequan Zheng, Wei Hao, Lijun Chen:
PDQ-Net: Deep probabilistic dual quaternion network for absolute pose regression on SE(3). 1118-1127 - Mingyang Yi:

Accelerating training of batch normalization: A manifold perspective. 1128-1137 - Naiqi Li, Wenjie Li, Yong Jiang, Shu-Tao Xia:

Deep Dirichlet process mixture models. 1138-1147 - Zihao Li

, Xiaohui Bei, Zhenzhen Yan:
Proportional allocation of indivisible resources under ordinal and uncertain preferences. 1148-1157 - Dexun Li, Pradeep Varakantham:

Efficient resource allocation with fairness constraints in restless multi-armed bandits. 1158-1167 - Weizhi Li, Gautam Dasarathy, Karthikeyan Natesan Ramamurthy, Visar Berisha:

A label efficient two-sample test. 1168-1177 - Wanshan Li, Shamindra Shrotriya, Alessandro Rinaldo:

ℓ∞-Bounds of the MLE in the BTL Model under General Comparison Graphs. 1178-1187 - Qiyang Li, Ajay Jain, Pieter Abbeel:

AdaCat: Adaptive categorical discretization for autoregressive models. 1188-1198 - Jakob Lindinger, Barbara Rakitsch, Christoph Lippert:

Laplace approximated Gaussian process state-space models. 1199-1209 - Yurong Ling, Jing-Hao Xue:

Dimension reduction for high-dimensional small counts with KL divergence. 1210-1220 - Xutong Liu, Haoru Zhao, Tong Yu, Shuai Li, John C. S. Lui:

Federated online clustering of bandits. 1221-1231 - Tianyi Liu, Weihao Gao, Zhirui Wang, Chong Wang:

PathFlow: A normalizing flow generator that finds transition paths. 1232-1242 - Zizhen Liu, Si Chen, Jing Ye, Junfeng Fan, Huawei Li, Xiaowei Li:

SASH: Efficient secure aggregation based on SHPRG for federated learning. 1243-1252 - Yao Liu, Yannis Flet-Berliac, Emma Brunskill:

Offline policy optimization with eligible actions. 1253-1263 - Elita A. Lobo, Harvineet Singh, Marek Petrik, Cynthia Rudin, Himabindu Lakkaraju:

Data poisoning attacks on off-policy policy evaluation methods. 1264-1274 - Chien Lu, Jaakko Peltonen, Timo Nummenmaa, Jyrki Nummenmaa:

Nonparametric exponential family graph embeddings for multiple representation learning. 1275-1285 - Rachel Luo, Aadyot Bhatnagar, Yu Bai, Shengjia Zhao, Huan Wang, Caiming Xiong, Silvio Savarese, Stefano Ermon, Edward Schmerling, Marco Pavone:

Local calibration: metrics and recalibration. 1286-1295 - Shaocong Ma, Ziyi Chen, Yi Zhou, Kaiyi Ji, Yingbin Liang:

Data sampling affects the complexity of online SGD over dependent data. 1296-1305 - Wesley J. Maddox, Andres Potapczynski, Andrew Gordon Wilson:

Low-precision arithmetic for fast Gaussian processes. 1306-1316 - Pratyush Maini, Xinyun Chen, Bo Li, Dawn Song:

Perturbation type categorization for multiple adversarial perturbation robustness. 1317-1327 - Aurghya Maiti, Vineet Nair, Gaurav Sinha:

A causal bandit approach to learning good atomic interventions in presence of unobserved confounders. 1328-1338 - Anton Matsson, Fredrik D. Johansson:

Case-based off-policy evaluation using prototype learning. 1339-1349 - Lucas Maystre, Tiffany Wu, Roberto Sanchis-Ojeda, Tony Jebara:

Multistate analysis with infinite mixtures of Markov chains. 1350-1359 - Sachit Menon, David M. Blei, Carl Vondrick:

Forget-me-not! Contrastive critics for mitigating posterior collapse. 1360-1370 - Washim Uddin Mondal, Vaneet Aggarwal, Satish V. Ukkusuri:

Can mean field control (mfc) approximate cooperative multi agent reinforcement learning (marl) with non-uniform interaction? 1371-1380 - Joao Monteiro, Mohamed Osama Ahmed, Hossein Hajimirsadeghi, Greg Mori:

Monotonicity regularization: Improved penalties and novel applications to disentangled representation learning and robust classification. 1381-1391 - Thomas Mortier

, Eyke Hüllermeier, Krzysztof Dembczynski, Willem Waegeman:
Set-valued prediction in hierarchical classification with constrained representation complexity. 1392-1401 - Subhojyoti Mukherjee

:
Safety aware changepoint detection for piecewise i.i.d. bandits. 1402-1412 - Subhojyoti Mukherjee

, Josiah P. Hanna, Robert D. Nowak:
ReVar: Strengthening policy evaluation via reduced variance sampling. 1413-1422 - Andreas Munk, Berend Zwartsenberg, Adam Scibior, Atilim Günes Baydin, Andrew Stewart, Goran Fernlund, Anoush Poursartip, Frank Wood:

Probabilistic surrogate networks for simulators with unbounded randomness. 1423-1433 - Seth Nabarro, Stoil Ganev, Adrià Garriga-Alonso, Vincent Fortuin

, Mark van der Wilk, Laurence Aitchison:
Data augmentation in Bayesian neural networks and the cold posterior effect. 1434-1444 - Razieh Nabi, Todd McNutt, Ilya Shpitser:

Semiparametric causal sufficient dimension reduction of multidimensional treatments. 1445-1455 - Hisayoshi Nanmo

, Manabu Kuroki:
Partially adaptive regularized multiple regression analysis for estimating linear causal effects. 1456-1465 - Md. Nasim, Xinghang Zhang, Anter El-Azab, Yexiang Xue:

Efficient learning of sparse and decomposable PDEs using random projection. 1466-1476 - Elliot Nelson, Debarun Bhattacharjya, Tian Gao, Miao Liu, Djallel Bouneffouf, Pascal Poupart:

Linearizing contextual bandits with latent state dynamics. 1477-1487 - Daniel Nemirovsky, Nicolas Thiebaut, Ye Xu, Abhishek Gupta:

CounteRGAN: Generating counterfactuals for real-time recourse and interpretability using residual GANs. 1488-1497 - Tuan-Duy H. Nguyen, Ngoc Bui, Duy Nguyen, Man-Chung Yue, Viet Anh Nguyen:

Robust Bayesian recourse. 1498-1508 - Duc Nguyen:

Efficient and accurate top-k recovery from choice data. 1509-1518 - Tuan Nguyen, Van Nguyen, Trung Le, He Zhao, Quan Hung Tran, Dinh Q. Phung:

Cycle class consistency with distributional optimal transport and knowledge distillation for unsupervised domain adaptation. 1519-1529 - Yang Ni, Bani K. Mallick:

Ordinal causal discovery. 1530-1540 - Guanyu Nie, Mridul Agarwal, Abhishek Kumar Umrawal, Vaneet Aggarwal, Christopher John Quinn:

An explore-then-commit algorithm for submodular maximization under full-bandit feedback. 1541-1551 - Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Xiuyuan Lu, Benjamin Van Roy:

Evaluating high-order predictive distributions in deep learning. 1552-1560 - Yangchen Pan

, Jincheng Mei, Amir-massoud Farahmand, Martha White, Hengshuai Yao, Mohsen Rohani, Jun Luo:
Understanding and mitigating the limitations of prioritized experience replay. 1561-1571 - Rohith Peddi, Tahrima Rahman, Vibhav Gogate

:
Robust learning of tractable probabilistic models. 1572-1581 - Iker Perez, Piotr Skalski, Alec Barns-Graham, Jason Wong, David Sutton:

Attribution of predictive uncertainties in classification models. 1582-1591 - Vaidyanathan Peruvemba Ramaswamy

, Stefan Szeider:
Learning large Bayesian networks with expert constraints. 1592-1601 - Bobak Pezeshki, Radu Marinescu, Alexander Ihler, Rina Dechter:

AND/OR branch-and-bound for computational protein design optimizing K. 1602-1612 - Niklas Pfister, Jonas Peters

:
Identifiability of sparse causal effects using instrumental variables. 1613-1622 - Victor Picheny, Henry B. Moss, Léeonard Torossian, Nicolas Durrande:

Bayesian quantile and expectile optimisation. 1623-1633 - Daira Pinto Prieto, Ronald de Haan:

Using hierarchies to efficiently combine evidence with Dempster's rule of combination. 1634-1643 - Vladislav Polianskii, Giovanni Luca Marchetti, Alexander Kravberg, Anastasiia Varava, Florian T. Pokorny, Danica Kragic:

Voronoi density estimator for high-dimensional data: Computation, compactification and convergence. 1644-1653 - Mostafa Rahmani:

Clustering a union of linear subspaces via matrix factorization and innovation search. 1654-1664 - Giorgia Ramponi, Marcello Restelli:

Learning in Markov games: Can we exploit a general-sum opponent? 1665-1675 - Tim Reichelt, Adam Golinski, Luke Ong, Tom Rainforth:

Expectation programming: Adapting probabilistic programming systems to estimate expectations efficiently. 1676-1685 - Tongzheng Ren, Tianjun Zhang, Csaba Szepesvári, Bo Dai:

A free lunch from the noise: Provable and practical exploration for representation learning. 1686-1696 - Mathieu Roget, Giuseppe Di Molfetta, Hachem Kadri:

Quantum perceptron revisited: Computational-statistical tradeoffs. 1697-1706 - Esther Rolf, Nikolay Malkin, Alexandros Graikos, Ana Jojic, Caleb Robinson, Nebojsa Jojic:

Resolving label uncertainty with implicit posterior models. 1707-1717 - Maxim Samarin, Volker Roth, David Belius:

Feature learning and random features in standard finite-width convolutional neural networks: An empirical study. 1718-1727 - Karthik Abinav Sankararaman, Anand Louis, Navin Goyal:

Robust identifiability in linear structural equation models of causal inference. 1728-1737 - Amartya Sanyal, Yaxi Hu, Fanny Yang:

How unfair is private learning? 1738-1748 - Pola Schwöbel, Frederik Rahbæk Warburg, Martin Jørgensen, Kristoffer Hougaard Madsen, Søren Hauberg:

Probabilistic spatial transformer networks. 1749-1759 - Kira A. Selby, Ahmad Rashid, Ivan Kobyzev, Mehdi Rezagholizadeh, Pascal Poupart:

Learning functions on multiple sets using multi-set transformers. 1760-1770 - Vishal Sharma, Daman Arora, Florian Geißer, Mausam, Parag Singla:

SymNet 2.0: Effectively handling Non-Fluents and Actions in Generalized Neural Policies for RDDL Relational MDPs. 1771-1781 - Xinwei Shen, Shengyu Zhu, Jiji Zhang, Shoubo Hu, Zhitang Chen:

Reframed GES with a neural conditional dependence measure. 1782-1791 - Yuyang Shi, Valentin De Bortoli, George Deligiannidis, Arnaud Doucet:

Conditional simulation using diffusion Schrödinger bridges. 1792-1802 - Yao Shu, Yizhou Chen, Zhongxiang Dai, Bryan Kian Hsiang Low:

Neural ensemble search via Bayesian sampling. 1803-1812 - Egor Shulgin, Peter Richtárik:

Shifted compression framework: generalizations and improvements. 1813-1823 - Anthony Sicilia, Katherine Atwell, Malihe Alikhani, Seong Jae Hwang:

PAC-Bayesian domain adaptation bounds for multiclass learners. 1824-1834 - Sahil Sidheekh, Chris B. Dock, Tushar Jain, Radu V. Balan, Maneesh Kumar Singh:

VQ-Flows: Vector quantized local normalizing flows. 1835-1845 - Jeffrey Smith

, Jesse Cranney, Charles Gretton, Damien Gratadour:
Enhanced adaptive optics control with image to image translation. 1846-1856 - Sungryull Sohn, Hyunjae Woo, Jongwook Choi, Lyubing Qiang, Izzeddin Gur, Aleksandra Faust, Honglak Lee:

Fast inference and transfer of compositional task structures for few-shot task generalization. 1857-1865 - Kaiyu Song, Kun Yue, Liang Duan, Mingze Yang, Angsheng Li:

Mutual information based Bayesian graph neural network for few-shot learning. 1866-1875 - Giuseppe Spallitta, Gabriele Masina, Paolo Morettin, Andrea Passerini, Roberto Sebastiani:

SMT-based weighted model integration with structure awareness. 1876-1885 - Zehao Su, Leonard Henckel:

A robustness test for estimating total effects with covariate adjustment. 1886-1895 - Daiki Suehiro, Eiji Takimoto:

Simplified and unified analysis of various learning problems by reduction to Multiple-Instance Learning. 1896-1906 - Prasanth Sengadu Suresh, Prashant Doshi:

Marginal MAP estimation for inverse RL under occlusion with observer noise. 1907-1916 - Tongyi Tang, Krishna Balasubramanian, Thomas Chun Man Lee:

High-probability bounds for robust stochastic Frank-Wolfe algorithm. 1917-1927 - Zhiyang Teng, Chenhua Chen, Yan Zhang, Yue Zhang:

Contrastive latent variable models for neural text generation. 1928-1938 - Alexandru Tifrea, Eric Stavarache, Fanny Yang:

Semi-supervised novelty detection using ensembles with regularized disagreement. 1939-1948 - Federico Tomasi, Mounia Lalmas, Zhenwen Dai:

Efficient inference for dynamic topic modeling with large vocabularies. 1950-1959 - Daniele Tramontano

, Anthea Monod, Mathias Drton:
Learning linear non-Gaussian polytree models. 1960-1969 - Rosanna Turrisi, Rémi Flamary, Alain Rakotomamonjy, Massimiliano Pontil:

Multi-source domain adaptation via weighted joint distributions optimal transport. 1970-1980 - Svenja Uhlemeyer, Matthias Rottmann, Hanno Gottschalk:

Towards unsupervised open world semantic segmentation. 1981-1991 - Tycho F. A. van der Ouderaa, Mark van der Wilk:

Learning invariant weights in neural networks. 1992-2001 - Leena Chennuru Vankadara, Philipp Michael Faller, Michaela Hardt, Lenon Minorics, Debarghya Ghoshdastidar, Dominik Janzing:

Causal forecasting: generalization bounds for autoregressive models. 2002-2012 - Burak Varici, Karthikeyan Shanmugam

, Prasanna Sattigeri, Ali Tajer:
Intervention target estimation in the presence of latent variables. 2013-2023 - Thanh Vinh Vo, Young Lee, Trong Nghia Hoang, Tze-Yun Leong:

Bayesian federated estimation of causal effects from observational data. 2024-2034 - Changlin Wan, Pengtao Dang, Tong Zhao, Yong Zang, Chi Zhang, Sha Cao:

Bias aware probabilistic Boolean matrix factorization. 2035-2044 - Zhenyi Wang, Xiaoyang Wang, Li Shen, Qiuling Suo, Kaiqiang Song, Dong Yu, Yan Shen, Mingchen Gao:

Meta-learning without data via Wasserstein distributionally-robust model fusion. 2045-2055 - Xiaosen Wang, Yifeng Xiong

, Kun He:
Detecting textual adversarial examples through randomized substitution and vote. 2056-2065 - Zhe Wang, Jake Grigsby, Arshdeep Sekhon, Yanjun Qi:

ST-MAML : A stochastic-task based method for task-heterogeneous meta-learning. 2066-2074 - Haohan Wang, Zeyi Huang, Hanlin Zhang, Yong Jae Lee, Eric P. Xing:

Toward learning human-aligned cross-domain robust models by countering misaligned features. 2075-2084 - Houston Warren, Rafael Oliveira, Fabio T. Ramos:

Generalized Bayesian quadrature with spectral kernels. 2085-2095 - David S. Watson, Ricardo Silva:

Causal discovery under a confounder blanket. 2096-2106 - Marcel Wienöbst, Max Bannach, Maciej Liskiewicz:

A new constructive criterion for Markov equivalence of MAGs. 2107-2116 - Shuang Wu, Chi-Hua Wang, Yuantong Li, Guang Cheng:

Residual bootstrap exploration for stochastic linear bandit. 2117-2127 - Ruihan Wu, Xin Yang, Yuanshun Yao, Jiankai Sun, Tianyi Liu, Kilian Q. Weinberger, Chong Wang:

Differentially private multi-party data release for linear regression. 2128-2137 - Han Wu, Stefan Wager:

Partial likelihood Thompson sampling. 2138-2147 - Xiumin Xie, Chuanwen Hou, Zhixin Li:

Fine-Grained matching with multi-perspective similarity modeling for cross-modal retrieval. 2148-2158 - Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, Wei Zhang:

Deterministic policy gradient: Convergence analysis. 2159-2169 - Rui Yan, Gabriel Santos, Xiaoming Duan, David Parker, Marta Kwiatkowska:

Finite-horizon equilibria for neuro-symbolic concurrent stochastic games. 2170-2180 - Hanqi Yan, Lin Gui, Wenjie Li, Yulan He:

Addressing token uniformity in transformers via singular value transformation. 2181-2191 - Zhenhuan Yang, Shu Hu, Yunwen Lei, Kush R. Varshney, Siwei Lyu, Yiming Ying:

Differentially private SGDA for minimax problems. 2192-2202 - Huanhuan Yang, Dianxi Shi, Guojun Xie, Yingxuan Peng, Yi Zhang, Yantai Yang, Shaowu Yang:

Self-supervised representations for multi-view reinforcement learning. 2203-2213 - Yichen Yang, Xiaosen Wang, Kun He:

Robust textual embedding against word-level adversarial attacks. 2214-2224 - Shoujian Yang, Lian Yu:

CoSPA: An improved masked language model with copy mechanism for Chinese spelling correction. 2225-2234 - Yingzhen Yang, Ping Li:

Noisy L0-sparse subspace clustering on dimensionality reduced data. 2235-2245 - Mao Ye, Qiang Liu:

Pareto navigation gradient descent: a first-order algorithm for optimization in pareto set. 2246-2255 - Mao Ye, Ruichen Jiang, Haoxiang Wang, Dhruv Choudhary, Xiaocong Du, Bhargav Bhushanam, Aryan Mokhtari, Arun Kejariwal, Qiang Liu:

Future gradient descent for adapting the temporal shifting data distribution in online recommendation systems. 2256-2266 - Lu Yin, Vlado Menkovski, Meng Fang, Tianjin Huang, Yulong Pei, Mykola Pechenizkiy:

Superposing many tickets into one: A performance booster for sparse neural network training. 2267-2277 - Ming Yin, Wenjing Chen, Mengdi Wang, Yu-Xiang Wang:

Offline stochastic shortest path: Learning, evaluation and towards optimality. 2278-2288 - Gal Yona, Shay Moran, Gal Elidan, Amir Globerson:

Active learning with label comparisons. 2289-2298 - Heng You, Tianpei Yang, Yan Zheng, Jianye Hao, Matthew E. Taylor:

Cross-domain adaptive transfer reinforcement learning based on state-action correspondence. 2299-2309 - Sixie Yu, P. Jeffrey Brantingham, Matthew Valasik, Yevgeniy Vorobeychik:

Learning binary multi-scale games on networks. 2310-2319 - Zhongjie Yu, Fabrizio Ventola, Nils Thoma, Devendra Singh Dhami, Martin Mundt, Kristian Kersting:

Predictive Whittle networks for time series. 2320-2330 - Shujian Yu, Francesco Alesiani, Wenzhe Yin, Robert Jenssen, José C. Príncipe:

Principle of relevant information for graph sparsification. 2331-2341 - Xueying Zhan, Yaowei Wang, Antoni B. Chan:

Asymptotic optimality for active learning processes. 2342-2352 - Gaoyuan Zhang, Songtao Lu, Yihua Zhang, Xiangyi Chen, Pin-Yu Chen, Quanfu Fan, Lee Martie, Lior Horesh, Mingyi Hong, Sijia Liu:

Distributed adversarial training to robustify deep neural networks at scale. 2353-2363 - Yikai Zhang, Wenjia Zhang, Sammy Bald, Vamsi Pingali, Chao Chen, Mayank Goswami:

Stability of SGD: Tightness analysis and improved bounds. 2364-2373 - Zeyu Zhao

, Ke Xu, Xinghao Jiang, Tanfeng Sun:
Research on video adversarial attack with long living cycle. 2374-2382 - Fangting Zhou, Kejun He, Yang Ni:

Causal discovery with heterogeneous observational data. 2383-2393 - Qiang Zhou, Sinno Jialin Pan:

Convergence Analysis of Linear Coupling with Inexact Proximal Operator. 2394-2403 - Chenghan Zhou, Andrew Spivey, Haifeng Xu, Thanh Hong Nguyen:

Information design for multiple independent and self-interested defenders: Work less, pay off more. 2404-2413 - Yuchen Zhu, Limor Gultchin, Arthur Gretton, Matt J. Kusner, Ricardo Silva:

Causal inference with treatment measurement error: a nonparametric instrumental variable approach. 2414-2424

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














