default search action
Stephanie Milani
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j1]Stephanie Milani, Nicholay Topin, Manuela Veloso, Fei Fang:
Explainable Reinforcement Learning: A Survey and Comparative Review. ACM Comput. Surv. 56(7): 168:1-168:36 (2024) - [c16]Aravind Venugopal, Stephanie Milani, Fei Fang, Balaraman Ravindran:
MABL: Bi-Level Latent-Variable World Model for Sample-Efficient Multi-Agent Reinforcement Learning. AAMAS 2024: 1865-1873 - [c15]My Phan, Kianté Brantley, Stephanie Milani, Soroush Mehri, Gokul Swamy, Geoffrey J. Gordon:
When is Transfer Learning Possible? ICML 2024 - [i22]Ruiyi Wang, Stephanie Milani, Jamie C. Chiu, Shaun M. Eack, Travis Labrum, Samuel M. Murphy, Nev Jones, Kate Hardy, Hong Shen, Fei Fang, Zhiyu Zoey Chen:
PATIENT-Ψ: Using Large Language Models to Simulate Patients for Training Mental Health Professionals. CoRR abs/2405.19660 (2024) - [i21]Raja Farrukh Ali, Stephanie Milani, John Woods, Emmanuel Adenij, Ayesha Farooq, Clayton Mansel, Jeffrey Burns, William H. Hsu:
Unifying Interpretability and Explainability for Alzheimer's Disease Progression Prediction. CoRR abs/2406.07777 (2024) - [i20]Karolis Jucys, George Adamopoulos, Mehrab Hamidi, Stephanie Milani, Mohammad Reza Samsami, Artem Zholus, Sonia Joseph, Blake A. Richards, Irina Rish, Özgür Simsek:
Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent. CoRR abs/2407.12161 (2024) - [i19]Zhuorui Ye, Stephanie Milani, Geoffrey J. Gordon, Fei Fang:
Concept-Based Interpretable Reinforcement Learning with Limited to No Human Labels. CoRR abs/2407.15786 (2024) - 2023
- [c14]Stephanie Milani, Arthur Juliani, Ida Momennejad, Raluca Georgescu, Jaroslaw Rzepecki, Alison Shaw, Gavin Costello, Fei Fang, Sam Devlin, Katja Hofmann:
Navigates Like Me: Understanding How People Evaluate Human-Like AI in Video Games. CHI 2023: 572:1-572:18 - [c13]Stephanie Milani, Anssi Kanervisto, Karolis Ramanauskas, Sander Schulhoff, Brandon Houghton, Rohin Shah:
BEDD: The MineRL BASALT Evaluation and Demonstrations Dataset for Training and Benchmarking Agents that Solve Fuzzy Tasks. NeurIPS 2023 - [i18]Stephanie Milani, Arthur Juliani, Ida Momennejad, Raluca Georgescu, Jaroslaw Rzepecki, Alison Shaw, Gavin Costello, Fei Fang, Sam Devlin, Katja Hofmann:
Navigates Like Me: Understanding How People Evaluate Human-Like AI in Video Games. CoRR abs/2303.02160 (2023) - [i17]Stephanie Milani, Anssi Kanervisto, Karolis Ramanauskas, Sander Schulhoff, Brandon Houghton, Sharada P. Mohanty, Byron Galbraith, Ke Chen, Yan Song, Tianze Zhou, Bingquan Yu, He Liu, Kai Guan, Yujing Hu, Tangjie Lv, Federico Malato, Florian Leopold, Amogh Raut, Ville Hautamäki, Andrew Melnik, Shu Ishida, João F. Henriques, Robert Klassert, Walter Laurito, Ellen R. Novoseller, Vinicius G. Goecks, Nicholas R. Waytowich, David Watkins, Josh Miller, Rohin Shah:
Towards Solving Fuzzy Tasks with Human Feedback: A Retrospective of the MineRL BASALT 2022 Competition. CoRR abs/2303.13512 (2023) - [i16]Aravind Venugopal, Stephanie Milani, Fei Fang, Balaraman Ravindran:
Bi-level Latent Variable Model for Sample-Efficient Multi-Agent Reinforcement Learning. CoRR abs/2304.06011 (2023) - [i15]Stephanie Milani, Anssi Kanervisto, Karolis Ramanauskas, Sander Schulhoff, Brandon Houghton, Rohin Shah:
BEDD: The MineRL BASALT Evaluation and Demonstrations Dataset for Training and Benchmarking Agents that Solve Fuzzy Tasks. CoRR abs/2312.02405 (2023) - 2022
- [c12]Evelyn Zuniga, Stephanie Milani, Guy Leroy, Jaroslaw Rzepecki, Raluca Georgescu, Ida Momennejad, David Bignell, Mingfei Sun, Alison Shaw, Gavin Costello, Mikhail Jacob, Sam Devlin, Katja Hofmann:
How Humans Perceive Human-like Behavior in Video Game Navigation. CHI Extended Abstracts 2022: 391:1-391:11 - [c11]Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell, Stephanie Milani, Katja Hofmann, Matthew J. Hausknecht, Anca D. Dragan, Sam Devlin:
Uni[MASK]: Unified Inference in Sequential Decision Problems. NeurIPS 2022 - [c10]Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles A. Kamhoua, Evangelos E. Papalexakis, Fei Fang:
MAVIPER: Learning Decision Tree Policies for Interpretable Multi-agent Reinforcement Learning. ECML/PKDD (4) 2022: 251-266 - [i14]Stephanie Milani, Nicholay Topin, Manuela Veloso, Fei Fang:
A Survey of Explainable Reinforcement Learning. CoRR abs/2202.08434 (2022) - [i13]Anssi Kanervisto, Stephanie Milani, Karolis Ramanauskas, Nicholay Topin, Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu, Wei Yang, Weijun Hong, Zhongyue Huang, Haicheng Chen, Guangjun Zeng, Yue Lin, Vincent Micheli, Eloi Alonso, François Fleuret, Alexander Nikulin, Yury Belousov, Oleg Svidchenko, Aleksei Shpilman:
MineRL Diamond 2021 Competition: Overview, Results, and Lessons Learned. CoRR abs/2202.10583 (2022) - [i12]Rohin Shah, Steven H. Wang, Cody Wild, Stephanie Milani, Anssi Kanervisto, Vinicius G. Goecks, Nicholas R. Waytowich, David Watkins-Valls, Bharat Prakash, Edmund Mills, Divyansh Garg, Alexander Fries, Alexandra Souly, Jun Shern Chan, Daniel del Castillo, Tom Lieberum:
Retrospective on the 2021 BASALT Competition on Learning from Human Feedback. CoRR abs/2204.07123 (2022) - [i11]Micah Carroll, Jessy Lin, Orr Paradise, Raluca Georgescu, Mingfei Sun, David Bignell, Stephanie Milani, Katja Hofmann, Matthew J. Hausknecht, Anca D. Dragan, Sam Devlin:
Towards Flexible Inference in Sequential Decision Problems via Bidirectional Transformers. CoRR abs/2204.13326 (2022) - [i10]Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles A. Kamhoua, Evangelos E. Papalexakis, Fei Fang:
MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning. CoRR abs/2205.12449 (2022) - [i9]Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell, Stephanie Milani, Katja Hofmann, Matthew J. Hausknecht, Anca D. Dragan, Sam Devlin:
UniMASK: Unified Inference in Sequential Decision Problems. CoRR abs/2211.10869 (2022) - 2021
- [c9]Nicholay Topin, Stephanie Milani, Fei Fang, Manuela Veloso:
Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods. AAAI 2021: 9923-9931 - [c8]Anssi Kanervisto, Stephanie Milani, Karolis Ramanauskas, Nicholay Topin, Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu, Wei Yang, Weijun Hong, Zhongyue Huang, Haicheng Chen, Guangjun Zeng, Yue Lin, Vincent Micheli, Eloi Alonso, François Fleuret, Alexander Nikulin, Yury Belousov, Oleg Svidchenko, Aleksei Shpilman:
MineRL Diamond 2021 Competition: Overview, Results, and Lessons Learned. NeurIPS (Competition and Demos) 2021: 13-28 - [c7]Stephanie Milani, Anssi Kanervisto, Karolis Ramanauskas, Sander Schulhoff, Brandon Houghton, Sharada P. Mohanty, Byron Galbraith, Ke Chen, Yan Song, Tianze Zhou, Bingquan Yu, He Liu, Kai Guan, Yujing Hu, Tangjie Lv, Federico Malato, Florian Leopold, Amogh Raut, Ville Hautamäki, Andrew Melnik, Shu Ishida, João F. Henriques, Robert Klassert, Walter Laurito, Lucas Cazzonelli, Cedric Kulbach, Nicholas Popovic, Marvin Schweizer, Ellen R. Novoseller, Vinicius G. Goecks, Nicholas R. Waytowich, David Watkins, Josh Miller, Rohin Shah:
Towards Solving Fuzzy Tasks with Human Feedback: A Retrospective of the MineRL BASALT 2022 Competition. NeurIPS (Competition and Demos) 2021: 171-188 - [c6]Rohin Shah, Steven H. Wang, Cody Wild, Stephanie Milani, Anssi Kanervisto, Vinicius G. Goecks, Nicholas R. Waytowich, David Watkins-Valls, Bharat Prakash, Edmund Mills, Divyansh Garg, Alexander Fries, Alexandra Souly, Jun Shern Chan, Daniel del Castillo, Tom Lieberum:
Retrospective on the 2021 MineRL BASALT Competition on Learning from Human Feedback. NeurIPS (Competition and Demos) 2021: 259-272 - [i8]William H. Guss, Mario Ynocente Castro, Sam Devlin, Brandon Houghton, Noboru Sean Kuno, Crissman Loomis, Stephanie Milani, Sharada P. Mohanty, Keisuke Nakata, Ruslan Salakhutdinov, John Schulman, Shinya Shiroshita, Nicholay Topin, Avinash Ummadisingu, Oriol Vinyals:
The MineRL 2020 Competition on Sample Efficient Reinforcement Learning using Human Priors. CoRR abs/2101.11071 (2021) - [i7]Nicholay Topin, Stephanie Milani, Fei Fang, Manuela Veloso:
Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods. CoRR abs/2102.13045 (2021) - [i6]William Hebgen Guss, Stephanie Milani, Nicholay Topin, Brandon Houghton, Sharada P. Mohanty, Andrew Melnik, Augustin Harter, Benoit Buschmaas, Bjarne Jaster, Christoph Berganski, Dennis Heitkamp, Marko Henning, Helge J. Ritter, Chengjie Wu, Xiaotian Hao, Yiming Lu, Hangyu Mao, Yihuan Mao, Chao Wang, Michal Opanowicz, Anssi Kanervisto, Yanick Schraner, Christian Scheller, Xiren Zhou, Lu Liu, Daichi Nishio, Toi Tsuneda, Karolis Ramanauskas, Gabija Juceviciute:
Towards robust and domain agnostic reinforcement learning competitions. CoRR abs/2106.03748 (2021) - [i5]Rohin Shah, Cody Wild, Steven H. Wang, Neel Alex, Brandon Houghton, William H. Guss, Sharada P. Mohanty, Anssi Kanervisto, Stephanie Milani, Nicholay Topin, Pieter Abbeel, Stuart Russell, Anca D. Dragan:
The MineRL BASALT Competition on Learning from Human Feedback. CoRR abs/2107.01969 (2021) - 2020
- [c5]John Winder, Stephanie Milani, Matthew Landen, Erebus Oh, Shane Parr, Shawn Squire, Marie desJardins, Cynthia Matuszek:
Planning with Abstract Learned Models While Learning Transferable Subtasks. AAAI 2020: 9992-10000 - [c4]Stephanie Milani, Weiran Shen, Kevin S. Chan, Sridhar Venkatesan, Nandi O. Leslie, Charles A. Kamhoua, Fei Fang:
Harnessing the Power of Deception in Attack Graph-Based Security Games. GameSec 2020: 147-167 - [c3]William Hebgen Guss, Stephanie Milani, Nicholay Topin, Brandon Houghton, Sharada P. Mohanty, Andrew Melnik, Augustin Harter, Benoit Buschmaas, Bjarne Jaster, Christoph Berganski, Dennis Heitkamp, Marko Henning, Helge J. Ritter, Chengjie Wu, Xiaotian Hao, Yiming Lu, Hangyu Mao, Yihuan Mao, Chao Wang, Michal Opanowicz, Anssi Kanervisto, Yanick Schraner, Christian Scheller, Xiren Zhou, Lu Liu, Daichi Nishio, Toi Tsuneda, Karolis Ramanauskas, Gabija Juceviciute:
Towards robust and domain agnostic reinforcement learning competitions: MineRL 2020. NeurIPS (Competition and Demos) 2020: 233-252 - [i4]Stephanie Milani, Nicholay Topin, Brandon Houghton, William H. Guss, Sharada P. Mohanty, Keisuke Nakata, Oriol Vinyals, Noboru Sean Kuno:
Retrospective Analysis of the 2019 MineRL Competition on Sample Efficient Reinforcement Learning. CoRR abs/2003.05012 (2020) - [i3]Brandon Houghton, Stephanie Milani, Nicholay Topin, William H. Guss, Katja Hofmann, Diego Perez Liebana, Manuela Veloso, Ruslan Salakhutdinov:
Guaranteeing Reproducibility in Deep Learning Competitions. CoRR abs/2005.06041 (2020)
2010 – 2019
- 2019
- [c2]Huao Li, Stephanie Milani, Vigneshram Krishnamoorthy, Michael Lewis, Katia P. Sycara:
Perceptions of Domestic Robots' Normative Behavior Across Cultures. AIES 2019: 345-351 - [c1]Stephanie Milani, Nicholay Topin, Brandon Houghton, William H. Guss, Sharada P. Mohanty, Keisuke Nakata, Oriol Vinyals, Noboru Sean Kuno:
Retrospective Analysis of the 2019 MineRL Competition on Sample Efficient Reinforcement Learning. NeurIPS (Competition and Demos) 2019: 203-214 - [i2]William H. Guss, Cayden R. Codel, Katja Hofmann, Brandon Houghton, Noburu Kuno, Stephanie Milani, Sharada P. Mohanty, Diego Perez Liebana, Ruslan Salakhutdinov, Nicholay Topin, Manuela Veloso, Phillip Wang:
The MineRL Competition on Sample Efficient Reinforcement Learning using Human Priors. CoRR abs/1904.10079 (2019) - [i1]John Winder, Stephanie Milani, Matthew Landen, Erebus Oh, Shane Parr, Shawn Squire, Marie desJardins, Cynthia Matuszek:
Planning with Abstract Learned Models While Learning Transferable Subtasks. CoRR abs/1912.07544 (2019)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:25 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint