


Остановите войну!
for scientists:


default search action
Bo Han 0003
Person information

- affiliation: Hong Kong Baptist University, Department of Computer Science, Hong Kong
- affiliation: University of Technology Sydney, Centre for Artificial Intelligence, NSW, Australia
Other persons with the same name
- Bo Han — disambiguation page
- Bo Han 0001 — George Mason University, VA, USA (and 2 more)
- Bo Han 0002 — Hugo.ai, Surry Hills, Australia (and 1 more)
- Bo Han 0004
— Liaocheng University, School of Mathematical Sciences, China
- Bo Han 0005
— Xi'an JiaoTong University, Xi'an, China
- Bo Han 0006 — Ocean University of China, Qingdao, Shandong, China
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j7]Chen Gong
, Qizhou Wang, Tongliang Liu
, Bo Han
, Jane You
, Jian Yang
, Dacheng Tao
:
Instance-Dependent Positive and Unlabeled Learning With Labeling Bias Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 44(8): 4163-4177 (2022) - [c56]Masashi Sugiyama, Tongliang Liu, Bo Han, Yang Liu, Gang Niu:
Learning and Mining with Noisy Labels. CIKM 2022: 5152-5155 - [c55]Songhua Wu, Mingming Gong, Bo Han, Yang Liu, Tongliang Liu:
Fair Classification with Instance-dependent Label Noise. CLeaR 2022: 927-943 - [c54]De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao, Masashi Sugiyama:
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation. CVPR 2022: 16609-16618 - [c53]Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, James Cheng:
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability. ICLR 2022 - [c52]Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Bo Han, Gang Niu, Mingyuan Zhou, Masashi Sugiyama:
Meta Discovery: Learning to Discover Novel Classes given Very Limited Data. ICLR 2022 - [c51]Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama:
Sample Selection with Uncertainty of Losses for Learning with Noisy Labels. ICLR 2022 - [c50]Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Gang Niu, Masashi Sugiyama, Dacheng Tao:
Rethinking Class-Prior Estimation for Positive-Unlabeled Learning. ICLR 2022 - [c49]Fei Zhang, Lei Feng, Bo Han, Tongliang Liu, Gang Niu, Tao Qin, Masashi Sugiyama:
Exploiting Class Activation Value for Partial-Label Learning. ICLR 2022 - [c48]Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard Schölkopf, Kun Zhang:
Adversarial Robustness Through the Lens of Causality. ICLR 2022 - [c47]Jianing Zhu, Jiangchao Yao, Bo Han, Jingfeng Zhang, Tongliang Liu, Gang Niu, Jingren Zhou, Jianliang Xu, Hongxia Yang:
Reliable Adversarial Distillation with Unreliable Teachers. ICLR 2022 - [c46]Ruize Gao, Jiongxiao Wang, Kaiwen Zhou, Feng Liu, Binghui Xie, Gang Niu, Bo Han, James Cheng:
Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack. ICML 2022: 7144-7163 - [c45]Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, Tongliang Liu:
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network. ICML 2022: 25302-25312 - [c44]Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, Tongliang Liu:
Understanding Robust Overfitting of Adversarial Training and Beyond. ICML 2022: 25595-25610 - [c43]Dawei Zhou
, Nannan Wang, Xinbo Gao, Bo Han, Xiaoyu Wang, Yibing Zhan, Tongliang Liu:
Improving Adversarial Robustness via Mutual Information Estimation. ICML 2022: 27338-27352 - [c42]Dawei Zhou
, Nannan Wang, Bo Han, Tongliang Liu:
Modeling Adversarial Noise for Adversarial Training. ICML 2022: 27353-27366 - [c41]Chaojian Yu, Bo Han, Mingming Gong, Li Shen, Shiming Ge, Du Bo, Tongliang Liu:
Robust Weight Perturbation for Adversarial Training. IJCAI 2022: 3688-3694 - [c40]Xiong Peng, Feng Liu, Jingfeng Zhang, Long Lan, Junjie Ye, Tongliang Liu, Bo Han:
Bilateral Dependency Optimization: Defending Against Model-inversion Attacks. KDD 2022: 1358-1367 - [c39]Jiangchao Yao, Feng Wang, Xichen Ding, Shaohu Chen, Bo Han, Jingren Zhou, Hongxia Yang:
Device-cloud Collaborative Recommendation via Meta Controller. KDD 2022: 4353-4362 - [i78]Yexiong Lin, Yu Yao, Yuxuan Du, Jun Yu, Bo Han, Mingming Gong, Tongliang Liu:
Do We Need to Penalize Variance of Losses for Learning with Label Noise? CoRR abs/2201.12739 (2022) - [i77]Yongqiang Chen, Yonggang Zhang, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han, James Cheng:
Invariance Principle Meets Out-of-Distribution Generalization on Graphs. CoRR abs/2202.05441 (2022) - [i76]Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, James Cheng:
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability. CoRR abs/2202.08057 (2022) - [i75]Quanming Yao, Yaqing Wang, Bo Han, James T. Kwok:
Low-rank Tensor Learning with Nonconvex Overlapped Nuclear Norm Regularization. CoRR abs/2205.03059 (2022) - [i74]Xiaobo Xia, Wenhao Yang, Jie Ren, Yewen Li, Yibing Zhan, Bo Han, Tongliang Liu:
Pluralistic Image Completion with Probabilistic Mixture-of-Experts. CoRR abs/2205.09086 (2022) - [i73]Zhuowei Wang, Tianyi Zhou, Guodong Long, Bo Han, Jing Jiang:
FedNoiL: A Simple Two-Level Sampling Method for Federated Learning with Noisy Labels. CoRR abs/2205.10110 (2022) - [i72]Aoqi Zuo, Susan Wei, Tongliang Liu, Bo Han, Kun Zhang, Mingming Gong:
Counterfactual Fairness with Partially Known Causal Graph. CoRR abs/2205.13972 (2022) - [i71]Chaojian Yu, Bo Han, Mingming Gong, Li Shen, Shiming Ge, Bo Du, Tongliang Liu:
Robust Weight Perturbation for Adversarial Training. CoRR abs/2205.14826 (2022) - [i70]Yingbin Bai, Erkun Yang, Zhaoqing Wang, Yuxuan Du, Bo Han, Cheng Deng, Dadong Wang, Tongliang Liu:
MSR: Making Self-supervised learning Robust to Aggressive Augmentations. CoRR abs/2206.01999 (2022) - [i69]De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao, Masashi Sugiyama:
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation. CoRR abs/2206.02791 (2022) - [i68]Xiong Peng, Feng Liu, Jingfen Zhang, Long Lan, Junjie Ye, Tongliang Liu, Bo Han:
Bilateral Dependency Optimization: Defending Against Model-inversion Attacks. CoRR abs/2206.05483 (2022) - [i67]Ruize Gao, Jiongxiao Wang, Kaiwen Zhou, Feng Liu, Binghui Xie, Gang Niu, Bo Han, James Cheng:
Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack. CoRR abs/2206.07314 (2022) - [i66]Yongqiang Chen
, Kaiwen Zhou, Yatao Bian, Binghui Xie, Kaili Ma, Yonggang Zhang, Han Yang
, Bo Han, James Cheng:
Pareto Invariant Risk Minimization. CoRR abs/2206.07766 (2022) - [i65]Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, Tongliang Liu:
Understanding Robust Overfitting of Adversarial Training and Beyond. CoRR abs/2206.08675 (2022) - [i64]Chenhan Jin, Kaiwen Zhou, Bo Han, James Cheng, Ming-Chang Yang:
Efficient Private SCO for Heavy-Tailed Data via Clipping. CoRR abs/2206.13011 (2022) - [i63]Jiangchao Yao, Feng Wang, Xichen Ding, Shaohu Chen, Bo Han, Jingren Zhou, Hongxia Yang:
Device-Cloud Collaborative Recommendation via Meta Controller. CoRR abs/2207.03066 (2022) - [i62]Zhuo Huang, Xiaobo Xia, Li Shen, Bo Han, Mingming Gong, Chen Gong, Tongliang Liu:
Harnessing Out-Of-Distribution Examples via Augmenting Content and Style. CoRR abs/2207.03162 (2022) - [i61]Dawei Zhou, Nannan Wang, Xinbo Gao, Bo Han, Xiaoyu Wang, Yibing Zhan, Tongliang Liu:
Improving Adversarial Robustness via Mutual Information Estimation. CoRR abs/2207.12203 (2022) - [i60]Chenghao Sun, Yonggang Zhang, Chaoqun Wan, Qizhou Wang, Ya Li, Tongliang Liu, Bo Han, Xinmei Tian:
Towards Lightweight Black-Box Attacks against Deep Neural Networks. CoRR abs/2209.14826 (2022) - [i59]Chaojian Yu, Dawei Zhou, Li Shen, Jun Yu, Bo Han, Mingming Gong, Nannan Wang, Tongliang Liu:
Strength-Adaptive Adversarial Training. CoRR abs/2210.01288 (2022) - [i58]Zhen Fang, Yixuan Li, Jie Lu, Jiahua Dong, Bo Han, Feng Liu:
Is Out-of-Distribution Detection Learnable? CoRR abs/2210.14707 (2022) - [i57]Qizhou Wang, Feng Liu, Yonggang Zhang, Jing Zhang, Chen Gong, Tongliang Liu, Bo Han:
Watermarking for Out-of-distribution Detection. CoRR abs/2210.15198 (2022) - [i56]Jianan Zhou, Jianing Zhu, Jingfeng Zhang, Tongliang Liu, Gang Niu, Bo Han, Masashi Sugiyama:
Adversarial Training with Complementary Labels: On the Benefit of Gradually Informative Attacks. CoRR abs/2211.00269 (2022) - 2021
- [j6]Bo Han
, Ivor W. Tsang
, Xiaokui Xiao
, Ling Chen
, Sai-Fu Fung
, Celina Ping Yu
:
Privacy-Preserving Stochastic Gradual Learning. IEEE Trans. Knowl. Data Eng. 33(8): 3129-3140 (2021) - [c38]Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, Chen Gong:
Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model. AAAI 2021: 10183-10191 - [c37]Qizhou Wang, Jiangchao Yao, Chen Gong, Tongliang Liu, Mingming Gong, Hongxia Yang, Bo Han:
Learning with Group Noise. AAAI 2021: 10192-10200 - [c36]Barakeel Fanseu Kamhoua, Lin Zhang, Kaili Ma, James Cheng, Bo Li, Bo Han:
HyperGraph Convolution Based Attributed HyperGraph Clustering. CIKM 2021: 453-463 - [c35]Chuang Zhang, Qizhou Wang, Tengfei Liu, Xun Lu, Jin Hong, Bo Han, Chen Gong:
Fraud Detection under Multi-Sourced Extremely Noisy Annotations. CIKM 2021: 2497-2506 - [c34]Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, Yi Chang:
Robust early-learning: Hindering the memorization of noisy labels. ICLR 2021 - [c33]Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, Mohan S. Kankanhalli:
Geometry-aware Instance-reweighted Adversarial Training. ICLR 2021 - [c32]Antonin Berthon, Bo Han, Gang Niu, Tongliang Liu, Masashi Sugiyama:
Confidence Scores Make Instance-dependent Label-noise Learning Possible. ICML 2021: 825-836 - [c31]Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, Junzhou Huang, Masashi Sugiyama:
Learning Diverse-Structured Networks for Adversarial Robustness. ICML 2021: 2880-2891 - [c30]Lei Feng, Senlin Shu, Nan Lu, Bo Han, Miao Xu
, Gang Niu, Bo An, Masashi Sugiyama:
Pointwise Binary Classification with Pairwise Confidence Comparisons. ICML 2021: 3252-3262 - [c29]Ruize Gao, Feng Liu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Masashi Sugiyama:
Maximum Mean Discrepancy Test is Aware of Adversarial Attacks. ICML 2021: 3564-3575 - [c28]Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, Masashi Sugiyama:
Provably End-to-end Label-noise Learning without Anchor Points. ICML 2021: 6403-6413 - [c27]Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu:
Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels. ICML 2021: 11285-11295 - [c26]Dawei Zhou
, Tongliang Liu, Bo Han, Nannan Wang, Chunlei Peng, Xinbo Gao:
Towards Defending against Adversarial Examples via Attack-Invariant Features. ICML 2021: 12835-12845 - [c25]Jiangchao Yao, Feng Wang, Kunyang Jia, Bo Han, Jingren Zhou, Hongxia Yang:
Device-Cloud Collaborative Learning for Recommendation. KDD 2021: 3865-3874 - [c24]Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, Kun Zhang:
Instance-dependent Label-noise Learning under a Structural Causal Model. NeurIPS 2021: 4409-4420 - [c23]Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Bo Han, William K. Cheung, James T. Kwok:
TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation. NeurIPS 2021: 20970-20982 - [c22]Qizhou Wang, Feng Liu, Bo Han, Tongliang Liu, Chen Gong, Gang Niu, Mingyuan Zhou, Masashi Sugiyama:
Probabilistic Margins for Instance Reweighting in Adversarial Training. NeurIPS 2021: 23258-23269 - [c21]Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, Tongliang Liu:
Understanding and Improving Early Stopping for Learning with Noisy Labels. NeurIPS 2021: 24392-24403 - [c20]Zhuo Huang, Chao Xue, Bo Han, Jian Yang, Chen Gong:
Universal Semi-Supervised Learning. NeurIPS 2021: 26714-26725 - [i55]Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, Chen Gong:
Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model. CoRR abs/2101.05467 (2021) - [i54]Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, Junzhou Huang, Masashi Sugiyama:
Learning Diverse-Structured Networks for Adversarial Robustness. CoRR abs/2102.01886 (2021) - [i53]Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, Masashi Sugiyama:
Provably End-to-end Label-Noise Learning without Anchor Points. CoRR abs/2102.02400 (2021) - [i52]Jianing Zhu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Hongxia Yang, Mohan S. Kankanhalli, Masashi Sugiyama:
Understanding the Interaction of Adversarial Training with Noisy Labels. CoRR abs/2102.03482 (2021) - [i51]Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Gang Niu, Bo Han:
Meta Discovery: Learning to Discover Novel Classes given Very Limited Data. CoRR abs/2102.04002 (2021) - [i50]Qizhou Wang, Jiangchao Yao, Chen Gong, Tongliang Liu, Mingming Gong, Hongxia Yang, Bo Han:
Learning with Group Noise. CoRR abs/2103.09468 (2021) - [i49]Jiangchao Yao, Feng Wang, Kunyang Jia, Bo Han, Jingren Zhou, Hongxia Yang:
Device-Cloud Collaborative Learning for Recommendation. CoRR abs/2104.06624 (2021) - [i48]Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, Tongliang Liu:
Estimating Instance-dependent Label-noise Transition Matrix using DNNs. CoRR abs/2105.13001 (2021) - [i47]Jingfeng Zhang, Xilie Xu, Bo Han, Tongliang Liu, Gang Niu, Lizhen Cui, Masashi Sugiyama:
NoiLIn: Do Noisy Labels Always Hurt Adversarial Training? CoRR abs/2105.14676 (2021) - [i46]Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama:
Sample Selection with Uncertainty of Losses for Learning with Noisy Labels. CoRR abs/2106.00445 (2021) - [i45]Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama:
Instance Correction for Learning with Open-set Noisy Labels. CoRR abs/2106.00455 (2021) - [i44]Jianing Zhu, Jiangchao Yao, Bo Han, Jingfeng Zhang, Tongliang Liu, Gang Niu, Jingren Zhou, Jianliang Xu, Hongxia Yang:
Reliable Adversarial Distillation with Unreliable Teachers. CoRR abs/2106.04928 (2021) - [i43]Dawei Zhou, Tongliang Liu, Bo Han, Nannan Wang, Chunlei Peng, Xinbo Gao:
Towards Defending against Adversarial Examples via Attack-Invariant Features. CoRR abs/2106.05036 (2021) - [i42]Dawei Zhou, Nannan Wang, Xinbo Gao, Bo Han, Jun Yu, Xiaoyu Wang, Tongliang Liu:
Improving White-box Robustness of Pre-processing Defenses via Joint Adversarial Training. CoRR abs/2106.05453 (2021) - [i41]Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard Schölkopf, Kun Zhang:
Adversarial Robustness through the Lens of Causality. CoRR abs/2106.06196 (2021) - [i40]Chenhong Zhou, Feng Liu, Chen Gong, Tongliang Liu, Bo Han, William Kwok-Wai Cheung:
KRADA: Known-region-aware Domain Alignment for Open World Semantic Segmentation. CoRR abs/2106.06237 (2021) - [i39]Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Bo Han, William K. Cheung, James T. Kwok:
TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation. CoRR abs/2106.06326 (2021) - [i38]Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, Wenbing Huang, Junzhou Huang:
PI-GNN: A Novel Perspective on Semi-Supervised Node Classification against Noisy Labels. CoRR abs/2106.07451 (2021) - [i37]Qizhou Wang, Feng Liu, Bo Han, Tongliang Liu, Chen Gong, Gang Niu, Mingyuan Zhou, Masashi Sugiyama:
Probabilistic Margins for Instance Reweighting in Adversarial Training. CoRR abs/2106.07904 (2021) - [i36]Ruize Gao, Feng Liu, Kaiwen Zhou, Gang Niu, Bo Han, James Cheng:
Local Reweighting for Adversarial Training. CoRR abs/2106.15776 (2021) - [i35]Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, Tongliang Liu:
Understanding and Improving Early Stopping for Learning with Noisy Labels. CoRR abs/2106.15853 (2021) - [i34]Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, Kun Zhang:
Instance-dependent Label-noise Learning under a Structural Causal Model. CoRR abs/2109.02986 (2021) - [i33]Dawei Zhou, Nannan Wang, Tongliang Liu, Bo Han:
Modelling Adversarial Noise for Adversarial Defense. CoRR abs/2109.09901 (2021) - [i32]Zeyuan Chen, Jiangchao Yao, Feng Wang, Kunyang Jia, Bo Han, Wei Zhang, Hongxia Yang:
MC$^2$-SF: Slow-Fast Learning for Mobile-Cloud Collaborative Recommendation. CoRR abs/2109.12314 (2021) - [i31]Yujie Pan, Jiangchao Yao, Bo Han, Kunyang Jia, Ya Zhang, Hongxia Yang:
Click-through Rate Prediction with Auto-Quantized Contrastive Learning. CoRR abs/2109.13921 (2021) - 2020
- [c19]Chao Li, Mohammad Emtiyaz Khan, Zhun Sun, Gang Niu, Bo Han, Shengli Xie, Qibin Zhao:
Beyond Unfolding: Exact Recovery of Latent Convex Tensor Decomposition Under Reshuffling. AAAI 2020: 4602-4609 - [c18]Chun Wang, Bo Han, Shirui Pan, Jing Jiang, Gang Niu, Guodong Long:
Cross-Graph: Robust and Unsupervised Embedding for Attributed Graphs with Corrupted Structure. ICDM 2020: 571-580 - [c17]Lei Feng, Takuo Kaneko, Bo Han, Gang Niu, Bo An, Masashi Sugiyama:
Learning with Multiple Complementary Labels. ICML 2020: 3072-3081 - [c16]Bo Han, Gang Niu, Xingrui Yu, Quanming Yao, Miao Xu, Ivor W. Tsang, Masashi Sugiyama:
SIGUA: Forgetting May Make Learning with Noisy Labels More Robust. ICML 2020: 4006-4016 - [c15]Voot Tangkaratt, Bo Han, Mohammad Emtiyaz Khan, Masashi Sugiyama:
Variational Imitation Learning with Diverse-quality Demonstrations. ICML 2020: 9407-9417 - [c14]Quanming Yao, Hansi Yang, Bo Han, Gang Niu, James Tin-Yau Kwok:
Searching to Exploit Memorization Effect in Learning with Noisy Labels. ICML 2020: 10789-10798 - [c13]Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, Mohan S. Kankanhalli:
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger. ICML 2020: 11278-11287 - [c12]Yijing Luo, Bo Han, Chen Gong:
A Bi-level Formulation for Label Noise Learning with Spectral Cluster Discovery. IJCAI 2020: 2605-2611 - [c11]Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, Masashi Sugiyama:
Provably Consistent Partial-Label Learning. NeurIPS 2020 - [c10]Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong, Haifeng Liu, Gang Niu, Dacheng Tao, Masashi Sugiyama:
Part-dependent Label Noise: Towards Instance-dependent Label Noise. NeurIPS 2020 - [c9]Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu, Masashi Sugiyama:
Dual T: Reducing Estimation Error for Transition Matrix in Label-noise Learning. NeurIPS 2020 - [c8]Bingcong Li, Bo Han, Zhuowei Wang, Jing Jiang, Guodong Long:
Confusable Learning for Large-Class Few-Shot Classification. ECML/PKDD (2) 2020: 707-723 - [i30]Antonin Berthon, Bo Han, Gang Niu, Tongliang Liu, Masashi Sugiyama:
Confidence Scores Make Instance-dependent Label-noise Learning Possible. CoRR abs/2001.03772 (2020) - [i29]Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Gang Niu, Masashi Sugiyama, Dacheng Tao:
Towards Mixture Proportion Estimation without Irreducibility. CoRR abs/2002.03673 (2020) - [i28]Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu:
Multi-Class Classification from Noisy-Similarity-Labeled Data. CoRR abs/2002.06508 (2020) - [i27]Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, Mohan S. Kankanhalli:
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger. CoRR abs/2002.11242 (2020) - [i26]Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu, Masashi Sugiyama:
Dual T: Reducing Estimation Error for Transition Matrix in Label-noise Learning. CoRR abs/2006.07805 (2020) - [i25]Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu:
Class2Simi: A New Perspective on Learning with Label Noise. CoRR abs/2006.07831 (2020) - [i24]Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong, Haifeng Liu, Gang Niu, Dacheng Tao, Masashi Sugiyama:
Parts-dependent Label Noise: Towards Instance-dependent Label Noise. CoRR abs/2006.07836 (2020) - [i23]Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, Masashi Sugiyama:
Provably Consistent Partial-Label Learning. CoRR abs/2007.08929 (2020) - [i22]Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, Mohan S. Kankanhalli:
Geometry-aware Instance-reweighted Adversarial Training. CoRR abs/2010.01736 (2020) - [i21]Lei Feng, Senlin Shu, Nan Lu, Bo Han, Miao Xu
, Gang Niu, Bo An, Masashi Sugiyama:
Pointwise Binary Classification with Pairwise Confidence Comparisons. CoRR abs/2010.01875 (2020) - [i20]Ruize Gao, Feng Liu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Masashi Sugiyama:
Maximum Mean Discrepancy is Aware of Adversarial Attacks. CoRR abs/2010.11415 (2020) - [i19]Bingcong Li, Bo Han, Zhuowei Wang, Jing Jiang, Guodong Long:
Confusable Learning for Large-class Few-Shot Classification. CoRR abs/2011.03154 (2020) - [i18]Bo Han, Quanming Yao, Tongliang Liu, Gang Niu, Ivor W. Tsang, James T. Kwok, Masashi Sugiyama:
A Survey of Label-noise Representation Learning: Past, Present and Future. CoRR abs/2011.04406 (2020) - [i17]Zhuowei Wang, Jing Jiang, Bo Han, Lei Feng, Bo An, Gang Niu, Guodong Long:
SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning. CoRR abs/2012.00925 (2020) - [i16]Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Jiankang Deng, Jiatong Li, Yinian Mao:
Extended T: Learning with Mixed Closed-set and Open-set Noisy Labels. CoRR abs/2012.00932 (2020)
2010 – 2019
- 2019
- [j5]Bo Han
, Quanming Yao
, Yuangang Pan
, Ivor W. Tsang
, Xiaokui Xiao
, Qiang Yang, Masashi Sugiyama
:
Millionaire: a hint-guided approach for crowdsourcing. Mach. Learn. 108(5): 831-858 (2019) - [j4]Bo Han
, Ivor W. Tsang
, Ling Chen
, Joey Tianyi Zhou
, Celina Ping Yu
:
Beyond Majority Voting: A Coarse-to-Fine Label Filtration for Heavily Noisy Labels. IEEE Trans. Neural Networks Learn. Syst. 30(12): 3774-3787 (2019) - [c7]Quanming Yao, James Tin-Yau Kwok, Bo Han:
Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations. ICML 2019: 7035-7044 - [c6]Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W. Tsang, Masashi Sugiyama:
How does Disagreement Help Generalization against Label Corruption? ICML 2019: 7164-7173 - [c5]Jingfeng Zhang
, Bo Han, Laura Wynter, Bryan Kian Hsiang Low, Mohan S. Kankanhalli:
Towards Robust ResNet: A Small Step but a Giant Leap. IJCAI 2019: 4285-4291 - [c4]