


Остановите войну!
for scientists:


default search action
Tongliang Liu
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j59]Jie Ma
, Jun Liu
, Yaxian Wang
, Junjun Li
, Tongliang Liu
:
Relation-Aware Fine-Grained Reasoning Network for Textbook Question Answering. IEEE Trans. Neural Networks Learn. Syst. 34(1): 15-27 (2023) - 2022
- [j58]Xu Yang
, Cheng Deng
, Tongliang Liu
, Dacheng Tao
:
Heterogeneous Graph Attention Network for Unsupervised Multiple-Target Domain Adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 44(4): 1992-2003 (2022) - [j57]Chen Gong
, Qizhou Wang, Tongliang Liu
, Bo Han
, Jane You
, Jian Yang
, Dacheng Tao
:
Instance-Dependent Positive and Unlabeled Learning With Labeling Bias Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 44(8): 4163-4177 (2022) - [j56]Hao Wang
, Cheng Deng
, Tongliang Liu
, Dacheng Tao
:
Transferable Coupled Network for Zero-Shot Sketch-Based Image Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 9181-9194 (2022) - [j55]Shuo Yang
, Songhua Wu
, Tongliang Liu
, Min Xu
:
Bridging the Gap Between Few-Shot and Many-Shot Learning via Distribution Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 9830-9843 (2022) - [j54]Guoqing Bao
, Huai Chen, Tongliang Liu, Guanzhong Gong, Yong Yin, Lisheng Wang, Xiuying Wang
:
COVID-MTL: Multitask learning with Shift3D and random-weighted loss for COVID-19 diagnosis and severity assessment. Pattern Recognit. 124: 108499 (2022) - [j53]Jingchen Ke
, Chen Gong
, Tongliang Liu
, Lin Zhao
, Jian Yang
, Dacheng Tao
:
Laplacian Welsch Regularization for Robust Semisupervised Learning. IEEE Trans. Cybern. 52(1): 164-177 (2022) - [j52]Xinpeng Ding
, Nannan Wang
, Shiwei Zhang, Ziyuan Huang
, Xiaomeng Li
, Mingqian Tang, Tongliang Liu
, Xinbo Gao
:
Exploring Language Hierarchy for Video Grounding. IEEE Trans. Image Process. 31: 4693-4706 (2022) - [j51]Yuxuan Du
, Min-Hsiu Hsieh
, Tongliang Liu
, Shan You
, Dacheng Tao
:
Quantum Differentially Private Sparse Regression Learning. IEEE Trans. Inf. Theory 68(8): 5217-5233 (2022) - [j50]Long Lan
, Tongliang Liu
, Xiang Zhang
, Chuanfu Xu
, Zhigang Luo
:
Label Propagated Nonnegative Matrix Factorization for Clustering. IEEE Trans. Knowl. Data Eng. 34(1): 340-351 (2022) - [j49]Lie Ju
, Xin Wang
, Lin Wang
, Dwarikanath Mahapatra
, Xin Zhao, Quan Zhou
, Tongliang Liu
, Zongyuan Ge
:
Improving Medical Images Classification With Label Noise Using Dual-Uncertainty Estimation. IEEE Trans. Medical Imaging 41(6): 1533-1546 (2022) - [j48]Zhaoyu Zhang
, Mengyan Li, Haonian Xie, Jun Yu
, Tongliang Liu, Chang Wen Chen
:
TWGAN: Twin Discriminator Generative Adversarial Networks. IEEE Trans. Multim. 24: 677-688 (2022) - [j47]Zhengning Wu
, Xiaobo Xia
, Ruxin Wang
, Jiatong Li, Jun Yu
, Yinian Mao, Tongliang Liu
:
LR-SVM+: Learning Using Privileged Information with Noisy Labels. IEEE Trans. Multim. 24: 1080-1092 (2022) - [j46]Jingwei Zhang
, Tongliang Liu
, Dacheng Tao
:
On the Rates of Convergence From Surrogate Risk Minimizers to the Bayes Optimal Classifier. IEEE Trans. Neural Networks Learn. Syst. 33(10): 5766-5774 (2022) - [j45]Shijun Cai, Seok-Hee Hong, Xiaobo Xia, Tongliang Liu, Weidong Huang:
A machine learning approach for predicting human shortest path task performance. Vis. Informatics 6(2): 50-61 (2022) - [c89]Amirmohammad Pasdar, Young Choon Lee, Tongliang Liu, Seok-Hee Hong:
Train Me to Fight: Machine-Learning Based On-Device Malware Detection for Mobile Devices. CCGRID 2022: 239-248 - [c88]Masashi Sugiyama, Tongliang Liu, Bo Han, Yang Liu, Gang Niu:
Learning and Mining with Noisy Labels. CIKM 2022: 5152-5155 - [c87]Songhua Wu, Mingming Gong, Bo Han, Yang Liu, Tongliang Liu:
Fair Classification with Instance-dependent Label Noise. CLeaR 2022: 927-943 - [c86]Shikun Li, Xiaobo Xia, Shiming Ge, Tongliang Liu:
Selective-Supervised Contrastive Learning with Noisy Labels. CVPR 2022: 316-325 - [c85]Xiang An, Jiankang Deng, Jia Guo, Ziyong Feng, Xuhan Zhu, Jing Yang, Tongliang Liu:
Killing Two Birds with One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC. CVPR 2022: 4032-4041 - [c84]Xiaoqing Guo
, Jie Liu, Tongliang Liu, Yixuan Yuan
:
SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation. CVPR 2022: 7022-7031 - [c83]Erkun Yang, Dongren Yao, Tongliang Liu, Cheng Deng:
Mutual Quantization for Cross-Modal Search with Noisy Labels. CVPR 2022: 7541-7550 - [c82]Zhaoqing Wang, Yu Lu, Qiang Li, Xunqiang Tao, Yandong Guo, Mingming Gong, Tongliang Liu:
CRIS: CLIP-Driven Referring Image Segmentation. CVPR 2022: 11676-11685 - [c81]Zhaoqing Wang, Qiang Li, Guoxin Zhang, Pengfei Wan, Wen Zheng, Nannan Wang, Mingming Gong, Tongliang Liu:
Exploring Set Similarity for Dense Self-supervised Representation Learning. CVPR 2022: 16569-16578 - [c80]De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao, Masashi Sugiyama:
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation. CVPR 2022: 16609-16618 - [c79]Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, James Cheng:
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability. ICLR 2022 - [c78]Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Bo Han, Gang Niu, Mingyuan Zhou, Masashi Sugiyama:
Meta Discovery: Learning to Discover Novel Classes given Very Limited Data. ICLR 2022 - [c77]Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, Yang Liu:
Learning with Noisy Labels Revisited: A Study Using Real-World Human Annotations. ICLR 2022 - [c76]Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama:
Sample Selection with Uncertainty of Losses for Learning with Noisy Labels. ICLR 2022 - [c75]Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Gang Niu, Masashi Sugiyama, Dacheng Tao:
Rethinking Class-Prior Estimation for Positive-Unlabeled Learning. ICLR 2022 - [c74]Fei Zhang, Lei Feng, Bo Han, Tongliang Liu, Gang Niu, Tao Qin, Masashi Sugiyama:
Exploiting Class Activation Value for Partial-Label Learning. ICLR 2022 - [c73]Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard Schölkopf, Kun Zhang:
Adversarial Robustness Through the Lens of Causality. ICLR 2022 - [c72]Jianing Zhu, Jiangchao Yao, Bo Han, Jingfeng Zhang, Tongliang Liu, Gang Niu, Jingren Zhou, Jianliang Xu, Hongxia Yang:
Reliable Adversarial Distillation with Unreliable Teachers. ICLR 2022 - [c71]Joshua Y. Kim
, Tongliang Liu, Kalina Yacef
:
Improving Supervised Learning in Conversational Analysis through Reusing Preprocessing Data as Auxiliary Supervisors. ICMI Companion 2022: 134-143 - [c70]Jiaheng Wei, Hangyu Liu, Tongliang Liu, Gang Niu, Masashi Sugiyama, Yang Liu:
To Smooth or Not? When Label Smoothing Meets Noisy Labels. ICML 2022: 23589-23614 - [c69]Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, Tongliang Liu:
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network. ICML 2022: 25302-25312 - [c68]Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, Tongliang Liu:
Understanding Robust Overfitting of Adversarial Training and Beyond. ICML 2022: 25595-25610 - [c67]Dawei Zhou
, Nannan Wang, Xinbo Gao, Bo Han, Xiaoyu Wang, Yibing Zhan, Tongliang Liu:
Improving Adversarial Robustness via Mutual Information Estimation. ICML 2022: 27338-27352 - [c66]Dawei Zhou
, Nannan Wang, Bo Han, Tongliang Liu:
Modeling Adversarial Noise for Adversarial Training. ICML 2022: 27353-27366 - [c65]Chaojian Yu, Bo Han, Mingming Gong, Li Shen, Shiming Ge, Du Bo, Tongliang Liu:
Robust Weight Perturbation for Adversarial Training. IJCAI 2022: 3688-3694 - [c64]Xiong Peng, Feng Liu, Jingfeng Zhang, Long Lan, Junjie Ye, Tongliang Liu, Bo Han:
Bilateral Dependency Optimization: Defending Against Model-inversion Attacks. KDD 2022: 1358-1367 - [c63]Xiaobo Xia, Shuo Shan, Mingming Gong, Nannan Wang, Fei Gao, Haikun Wei, Tongliang Liu:
Sample-Efficient Kernel Mean Estimator with Marginalized Corrupted Data. KDD 2022: 2110-2119 - [c62]Xin Jin, Tianyu He, Xu Shen, Tongliang Liu, Xinchao Wang, Jianqiang Huang, Zhibo Chen, Xian-Sheng Hua:
Meta Clustering Learning for Large-scale Unsupervised Person Re-identification. ACM Multimedia 2022: 2163-2172 - [c61]Yong Luo, Ling-Yu Duan, Yan Bai, Tongliang Liu, Yihang Lou, Yonggang Wen:
Nonlinear Multi-Model Reuse. MMSP 2022: 1-6 - [c60]Amirmohammad Pasdar
, Young Choon Lee, Seok-Hee Hong, Tongliang Liu:
MAPS: a dataset for semantic profiling and analysis of Android applications. MobiArch@MobiCom 2022: 13-18 - [i114]Yexiong Lin, Yu Yao, Yuxuan Du, Jun Yu, Bo Han, Mingming Gong, Tongliang Liu:
Do We Need to Penalize Variance of Losses for Learning with Label Noise? CoRR abs/2201.12739 (2022) - [i113]Yongqiang Chen, Yonggang Zhang, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han, James Cheng:
Invariance Principle Meets Out-of-Distribution Generalization on Graphs. CoRR abs/2202.05441 (2022) - [i112]Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, James Cheng:
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability. CoRR abs/2202.08057 (2022) - [i111]Shikun Li, Xiaobo Xia, Shiming Ge, Tongliang Liu:
Selective-Supervised Contrastive Learning with Noisy Labels. CoRR abs/2203.04181 (2022) - [i110]Shikun Li, Tongliang Liu, Jiyong Tan, Dan Zeng, Shiming Ge:
Trustable Co-label Learning from Multiple Noisy Annotators. CoRR abs/2203.04199 (2022) - [i109]Xiaoqing Guo, Jie Liu, Tongliang Liu, Yixuan Yuan:
SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation. CoRR abs/2203.15202 (2022) - [i108]Xiang An, Jiankang Deng, Jia Guo, Ziyong Feng, Xuhan Zhu, Jing Yang, Tongliang Liu:
Killing Two Birds with One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC. CoRR abs/2203.15565 (2022) - [i107]Chuang Liu, Yibing Zhan, Chang Li, Bo Du, Jia Wu, Wenbin Hu, Tongliang Liu, Dacheng Tao:
Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities. CoRR abs/2204.07321 (2022) - [i106]Xiaobo Xia, Wenhao Yang, Jie Ren, Yewen Li, Yibing Zhan, Bo Han, Tongliang Liu:
Pluralistic Image Completion with Probabilistic Mixture-of-Experts. CoRR abs/2205.09086 (2022) - [i105]Erdun Gao, Ignavier Ng, Mingming Gong, Li Shen, Wei Huang, Tongliang Liu, Kun Zhang, Howard Bondell
:
MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models. CoRR abs/2205.13869 (2022) - [i104]Aoqi Zuo, Susan Wei, Tongliang Liu, Bo Han, Kun Zhang, Mingming Gong:
Counterfactual Fairness with Partially Known Causal Graph. CoRR abs/2205.13972 (2022) - [i103]Chaojian Yu, Bo Han, Mingming Gong, Li Shen, Shiming Ge, Bo Du, Tongliang Liu:
Robust Weight Perturbation for Adversarial Training. CoRR abs/2205.14826 (2022) - [i102]Yingbin Bai, Erkun Yang, Zhaoqing Wang, Yuxuan Du, Bo Han, Cheng Deng, Dadong Wang, Tongliang Liu:
MSR: Making Self-supervised learning Robust to Aggressive Augmentations. CoRR abs/2206.01999 (2022) - [i101]De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao, Masashi Sugiyama:
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation. CoRR abs/2206.02791 (2022) - [i100]Jinkai Tian, Xiaoyu Sun, Yuxuan Du, Shanshan Zhao, Qing Liu, Kaining Zhang, Wei Yi, Wanrong Huang, Chaoyue Wang, Xingyao Wu, Min-Hsiu Hsieh, Tongliang Liu, Wenjing Yang, Dacheng Tao:
Recent Advances for Quantum Neural Networks in Generative Learning. CoRR abs/2206.03066 (2022) - [i99]Xiong Peng, Feng Liu, Jingfen Zhang, Long Lan, Junjie Ye, Tongliang Liu, Bo Han:
Bilateral Dependency Optimization: Defending Against Model-inversion Attacks. CoRR abs/2206.05483 (2022) - [i98]Lianyang Ma, Yu Yao, Tao Liang, Tongliang Liu:
Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment Analysis in Videos. CoRR abs/2206.07981 (2022) - [i97]Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, Tongliang Liu:
Understanding Robust Overfitting of Adversarial Training and Beyond. CoRR abs/2206.08675 (2022) - [i96]Zhuo Huang, Xiaobo Xia, Li Shen, Bo Han, Mingming Gong, Chen Gong, Tongliang Liu:
Harnessing Out-Of-Distribution Examples via Augmenting Content and Style. CoRR abs/2207.03162 (2022) - [i95]Dawei Zhou, Nannan Wang, Xinbo Gao, Bo Han, Xiaoyu Wang, Yibing Zhan, Tongliang Liu:
Improving Adversarial Robustness via Mutual Information Estimation. CoRR abs/2207.12203 (2022) - [i94]Xinbiao Wang, Junyu Liu, Tongliang Liu, Yong Luo, Yuxuan Du, Dacheng Tao:
Symmetric Pruning in Quantum Neural Networks. CoRR abs/2208.14057 (2022) - [i93]Chenghao Sun, Yonggang Zhang, Chaoqun Wan, Qizhou Wang, Ya Li, Tongliang Liu, Bo Han, Xinmei Tian:
Towards Lightweight Black-Box Attacks against Deep Neural Networks. CoRR abs/2209.14826 (2022) - [i92]Chaojian Yu, Dawei Zhou, Li Shen, Jun Yu, Bo Han, Mingming Gong, Nannan Wang, Tongliang Liu:
Strength-Adaptive Adversarial Training. CoRR abs/2210.01288 (2022) - [i91]Yuanyuan Wang, Wei Huang, Mingming Gong, Xi Geng, Tongliang Liu, Kun Zhang, Dacheng Tao:
Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations. CoRR abs/2210.05955 (2022) - [i90]Qizhou Wang, Feng Liu, Yonggang Zhang, Jing Zhang, Chen Gong, Tongliang Liu, Bo Han:
Watermarking for Out-of-distribution Detection. CoRR abs/2210.15198 (2022) - [i89]Jianan Zhou, Jianing Zhu, Jingfeng Zhang, Tongliang Liu, Gang Niu, Bo Han, Masashi Sugiyama:
Adversarial Training with Complementary Labels: On the Benefit of Gradually Informative Attacks. CoRR abs/2211.00269 (2022) - [i88]Maoyuan Ye, Jing Zhang, Shanshan Zhao, Juhua Liu, Tongliang Liu, Bo Du, Dacheng Tao:
DeepSolo: Let Transformer Decoder with Explicit Points Solo for Text Spotting. CoRR abs/2211.10772 (2022) - [i87]Huaxi Huang, Hui Kang, Sheng Liu, Olivier Salvado, Thierry Rakotoarivelo, Dadong Wang, Tongliang Liu:
PADDLES: Phase-Amplitude Spectrum Disentangled Early Stopping for Learning with Noisy Labels. CoRR abs/2212.03462 (2022) - 2021
- [j44]Zhe Chen
, Wanli Ouyang, Tongliang Liu, Dacheng Tao:
A Shape Transformation-based Dataset Augmentation Framework for Pedestrian Detection. Int. J. Comput. Vis. 129(4): 1121-1138 (2021) - [j43]Chen Gong
, Hong Shi, Tongliang Liu
, Chuang Zhang, Jian Yang
, Dacheng Tao
:
Loss Decomposition and Centroid Estimation for Positive and Unlabeled Learning. IEEE Trans. Pattern Anal. Mach. Intell. 43(3): 918-932 (2021) - [j42]Shuai Li
, Kui Jia
, Yuxin Wen
, Tongliang Liu
, Dacheng Tao
:
Orthogonal Deep Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 43(4): 1352-1368 (2021) - [j41]Jia Shao, Bo Du
, Chen Wu
, Mingming Gong
, Tongliang Liu
:
HRSiam: High-Resolution Siamese Network, Towards Space-Borne Satellite Video Tracking. IEEE Trans. Image Process. 30: 3056-3068 (2021) - [j40]Xinpeng Ding
, Nannan Wang
, Xinbo Gao
, Jie Li, Xiaoyu Wang
, Tongliang Liu
:
KFC: An Efficient Framework for Semi-Supervised Temporal Action Localization. IEEE Trans. Image Process. 30: 6869-6878 (2021) - [c59]Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, Chen Gong:
Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model. AAAI 2021: 10183-10191 - [c58]Qizhou Wang, Jiangchao Yao, Chen Gong, Tongliang Liu, Mingming Gong, Hongxia Yang, Bo Han:
Learning with Group Noise. AAAI 2021: 10192-10200 - [c57]Shijun Cai, Seok-Hee Hong, Jialiang Shen, Tongliang Liu:
A Machine Learning Approach for Predicting Human Preference for Graph Layouts*. PacificVis 2021: 6-10 - [c56]Zhen Huang, Xu Shen, Jun Xing, Tongliang Liu, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, Xian-Sheng Hua:
Revisiting Knowledge Distillation: An Inheritance and Exploration Framework. CVPR 2021: 3579-3588 - [c55]Zhaowei Zhu, Tongliang Liu, Yang Liu:
A Second-Order Approach to Learning With Instance-Dependent Label Noise. CVPR 2021: 10113-10123 - [c54]Dawei Zhou, Nannan Wang, Chunlei Peng, Xinbo Gao, Xiaoyu Wang, Jun Yu, Tongliang Liu:
Removing Adversarial Noise in Class Activation Feature Space. ICCV 2021: 7858-7867 - [c53]Yingbin Bai, Tongliang Liu:
Me-Momentum: Extracting Hard Confident Examples from Noisily Labeled Data. ICCV 2021: 9292-9301 - [c52]Jun Yu, Xinlong Hao, Zeyu Cui, Peng He, Tongliang Liu:
Boosting Fairness for Masked Face Recognition. ICCVW 2021: 1531-1540 - [c51]Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, Yi Chang:
Robust early-learning: Hindering the memorization of noisy labels. ICLR 2021 - [c50]Antonin Berthon, Bo Han, Gang Niu, Tongliang Liu, Masashi Sugiyama:
Confidence Scores Make Instance-dependent Label-noise Learning Possible. ICML 2021: 825-836 - [c49]Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, Junzhou Huang, Masashi Sugiyama:
Learning Diverse-Structured Networks for Adversarial Robustness. ICML 2021: 2880-2891 - [c48]Ruize Gao, Feng Liu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Masashi Sugiyama:
Maximum Mean Discrepancy Test is Aware of Adversarial Attacks. ICML 2021: 3564-3575 - [c47]Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, Masashi Sugiyama:
Provably End-to-end Label-noise Learning without Anchor Points. ICML 2021: 6403-6413 - [c46]Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu:
Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels. ICML 2021: 11285-11295 - [c45]Dawei Zhou
, Tongliang Liu, Bo Han, Nannan Wang, Chunlei Peng, Xinbo Gao:
Towards Defending against Adversarial Examples via Attack-Invariant Features. ICML 2021: 12835-12845 - [c44]Zhaoqing Wang, Xiangyu Kong, Zhanbei Cui, Ming Wu, Chuang Zhang, Mingming Gong, Tongliang Liu:
Vecnet: A Spectral and Multi-Scale Spatial Fusion Deep Network for Pixel-Level Cloud Type Classification in Himawari-8 Imagery. IGARSS 2021: 4083-4086 - [c43]Lie Ju
, Xin Wang, Lin Wang
, Tongliang Liu, Xin Zhao, Tom Drummond, Dwarikanath Mahapatra, Zongyuan Ge:
Relational Subsets Knowledge Distillation for Long-Tailed Retinal Diseases Recognition. MICCAI (8) 2021: 3-12 - [c42]Jiahua Dong, Zhen Fang, Anjin Liu, Gan Sun, Tongliang Liu:
Confident Anchor-Induced Multi-Source Free Domain Adaptation. NeurIPS 2021: 2848-2860 - [c41]Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, Kun Zhang:
Instance-dependent Label-noise Learning under a Structural Causal Model. NeurIPS 2021: 4409-4420 - [c40]Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Bo Han, William K. Cheung, James T. Kwok:
TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation. NeurIPS 2021: 20970-20982 - [c39]Qizhou Wang, Feng Liu, Bo Han, Tongliang Liu, Chen Gong, Gang Niu, Mingyuan Zhou, Masashi Sugiyama:
Probabilistic Margins for Instance Reweighting in Adversarial Training. NeurIPS 2021: 23258-23269 - [c38]Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, Tongliang Liu:
Understanding and Improving Early Stopping for Learning with Noisy Labels. NeurIPS 2021: 24392-24403 - [c37]Jiayu He, Matloob Khushi, Nguyen Hoang Tran, Tongliang Liu:
Robust Dual Recurrent Neural Networks for Financial Time Series Prediction. SDM 2021: 747-755 - [i86]Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, Chen Gong:
Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model. CoRR abs/2101.05467 (2021) - [i85]Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, Junzhou Huang, Masashi Sugiyama:
Learning Diverse-Structured Networks for Adversarial Robustness. CoRR abs/2102.01886 (2021) - [i84]Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, Masashi Sugiyama:
Provably End-to-end Label-Noise Learning without Anchor Points. CoRR abs/2102.02400 (2021) - [i83]Jianing Zhu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Hongxia Yang, Mohan S. Kankanhalli, Masashi Sugiyama:
Understanding the Interaction of Adversarial Training with Noisy Labels. CoRR abs/2102.03482 (2021) - [i82]Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Gang Niu, Bo Han:
Meta Discovery: Learning to Discover Novel Classes given Very Limited Data. CoRR abs/2102.04002 (2021) - [i81]Lie Ju, Xin Wang, Lin Wang, Dwarikanath Mahapatra, Xin Zhao, Mehrtash Harandi, Tom Drummond, Tongliang Liu, Zongyuan Ge:
Improving Medical Image Classification with Label Noise Using Dual-uncertainty Estimation. CoRR abs/2103.00528 (2021) - [i80]Shijun Cai, Seok-Hee Hong, Jialiang Shen, Tongliang Liu:
A Machine Learning Approach for Predicting Human Preference for Graph Layouts. CoRR abs/2103.03665 (2021) - [i79]Qizhou Wang, Jiangchao Yao, Chen Gong, Tongliang Liu, Mingming Gong, Hongxia Yang, Bo Han:
Learning with Group Noise. CoRR abs/2103.09468 (2021) - [i78]Dawei Zhou, Nannan Wang, Chunlei Peng, Xinbo Gao, Xiaoyu Wang, Jun Yu, Tongliang Liu:
Removing Adversarial Noise in Class Activation Feature Space. CoRR abs/2104.09197 (2021) - [i77]Lie Ju, Xin Wang, Lin Wang, Tongliang Liu, Xin Zhao, Tom Drummond, Dwarikanath Mahapatra, Zongyuan Ge:
Relational Subsets Knowledge Distillation for Long-tailed Retinal Diseases Recognition. CoRR abs/2104.11057 (2021) - [i76]Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, Tongliang Liu:
Estimating Instance-dependent Label-noise Transition Matrix using DNNs. CoRR abs/2105.13001 (2021) - [i75]Jingfeng Zhang, Xilie Xu, Bo Han, Tongliang Liu, Gang Niu, Lizhen Cui, Masashi Sugiyama:
NoiLIn: Do Noisy Labels Always Hurt Adversarial Training? CoRR abs/2105.14676 (2021) - [i74]Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama:
Sample Selection with Uncertainty of Losses for Learning with Noisy Labels. CoRR abs/2106.00445 (2021) - [i73]Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama:
Instance Correction for Learning with Open-set Noisy Labels. CoRR abs/2106.00455 (2021) - [i72]Jiaheng Wei, Hangyu Liu, Tongliang Liu, Gang Niu, Yang Liu:
Understanding (Generalized) Label Smoothing when Learning with Noisy Labels. CoRR abs/2106.04149 (2021) - [i71]