default search action
David W. Zingg
Person information
- affiliation: University of Toronto, Canada
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j35]Zelalem Arega Worku, David W. Zingg:
Entropy-split multidimensional summation-by-parts discretization of the Euler and compressible Navier-Stokes equations. J. Comput. Phys. 502: 112821 (2024) - [j34]Zelalem Arega Worku, Jason E. Hicken, David W. Zingg:
Quadrature Rules on Triangles and Tetrahedra for Multidimensional Summation-By-Parts Operators. J. Sci. Comput. 101(1): 24 (2024) - [j33]Tristan Montoya, David W. Zingg:
Efficient Tensor-Product Spectral-Element Operators with the Summation-by-Parts Property on Curved Triangles and Tetrahedra. SIAM J. Sci. Comput. 46(4): 2270- (2024) - [i10]Zelalem Arega Worku, Jason E. Hicken, David W. Zingg:
Tensor-Product Split-Simplex Summation-By-Parts Operators. CoRR abs/2408.10494 (2024) - [i9]Zelalem Arega Worku, Jason E. Hicken, David W. Zingg:
Very high-order symmetric positive-interior quadrature rules on triangles and tetrahedra. CoRR abs/2409.02027 (2024) - 2023
- [j32]André L. Marchildon, David W. Zingg:
A Non-intrusive Solution to the Ill-Conditioning Problem of the Gradient-Enhanced Gaussian Covariance Matrix for Gaussian Processes. J. Sci. Comput. 95(2): 65 (2023) - [i8]Zelalem Arega Worku, David W. Zingg:
Entropy-split multidimensional summation-by-parts discretization of the Euler and Navier-Stokes equations. CoRR abs/2305.07181 (2023) - [i7]Tristan Montoya, David W. Zingg:
Efficient Tensor-Product Spectral-Element Operators with the Summation-by-Parts Property on Curved Triangles and Tetrahedra. CoRR abs/2306.05975 (2023) - [i6]Zelalem Arega Worku, Jason E. Hicken, David W. Zingg:
Quadrature Rules on Triangles and Tetrahedra for Multidimensional Summation-By-Parts Operators. CoRR abs/2311.15576 (2023) - [i5]Tristan Montoya, David W. Zingg:
Efficient Entropy-Stable Discontinuous Spectral-Element Methods Using Tensor-Product Summation-by-Parts Operators on Triangles and Tetrahedra. CoRR abs/2312.07874 (2023) - 2022
- [j31]Zelalem Arega Worku, David W. Zingg:
Stability and Functional Superconvergence of Narrow-Stencil Second-Derivative Generalized Summation-By-Parts Discretizations. J. Sci. Comput. 90(1): 42 (2022) - [j30]André L. Marchildon, David W. Zingg:
Unisolvency for Polynomial Interpolation in Simplices with Symmetrical Nodal Distributions. J. Sci. Comput. 92(2): 50 (2022) - [j29]Tristan Montoya, David W. Zingg:
A Unifying Algebraic Framework for Discontinuous Galerkin and Flux Reconstruction Methods Based on the Summation-by-Parts Property. J. Sci. Comput. 92(3): 87 (2022) - [j28]David A. Craig Penner, David W. Zingg:
Accurate High-Order Tensor-Product Generalized Summation-By-Parts Discretizations of Hyperbolic Conservation Laws: General Curved Domains and Functional Superconvergence. J. Sci. Comput. 93(2): 36 (2022) - 2021
- [j27]Zelalem Arega Worku, David W. Zingg:
Simultaneous approximation terms and functional accuracy for diffusion problems discretized with multidimensional summation-by-parts operators. J. Comput. Phys. 445: 110634 (2021) - [i4]Tristan Montoya, David W. Zingg:
A unifying algebraic framework for discontinuous Galerkin and flux reconstruction methods based on the summation-by-parts property. CoRR abs/2101.10478 (2021) - [i3]Zelalem Arega Worku, David W. Zingg:
Stability and Functional Superconvergence of Narrow-Stencil Second-Derivative Generalized Summation-By-Parts Discretizations. CoRR abs/2102.04868 (2021) - 2020
- [j26]André L. Marchildon, David W. Zingg:
Optimization of multidimensional diagonal-norm summation-by-parts operators on simplices. J. Comput. Phys. 411: 109380 (2020) - [j25]David A. Craig Penner, David W. Zingg:
Superconvergent Functional Estimates from Tensor-Product Generalized Summation-by-Parts Discretizations in Curvilinear Coordinates. J. Sci. Comput. 82(2): 41 (2020) - [j24]Siavosh Shadpey, David W. Zingg:
Entropy-Stable Multidimensional Summation-by-Parts Discretizations on hp-Adaptive Curvilinear Grids for Hyperbolic Conservation Laws. J. Sci. Comput. 82(3): 70 (2020) - [i2]Zelalem Arega Worku, David W. Zingg:
Simultaneous approximation terms and functional accuracy for diffusion problems discretized with multidimensional summation-by-parts operators. CoRR abs/2012.07812 (2020)
2010 – 2019
- 2019
- [j23]David A. Brown, David W. Zingg:
Monolithic homotopy continuation with predictor based on higher derivatives. J. Comput. Appl. Math. 346: 26-41 (2019) - [j22]David C. Del Rey Fernández, Pieter D. Boom, Mark H. Carpenter, David W. Zingg:
Extension of Tensor-Product Generalized and Dense-Norm Summation-by-Parts Operators to Curvilinear Coordinates. J. Sci. Comput. 80(3): 1957-1996 (2019) - 2018
- [j21]Jared Crean, Jason E. Hicken, David C. Del Rey Fernández, David W. Zingg, Mark H. Carpenter:
Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356: 410-438 (2018) - [j20]Pieter D. Boom, David W. Zingg:
Optimization of high-order diagonally-implicit Runge-Kutta methods. J. Comput. Phys. 371: 168-191 (2018) - [j19]David C. Del Rey Fernández, Jason E. Hicken, David W. Zingg:
Simultaneous Approximation Terms for Multi-dimensional Summation-by-Parts Operators. J. Sci. Comput. 75(1): 83-110 (2018) - [j18]Lucas Friedrich, David C. Del Rey Fernández, Andrew R. Winters, Gregor J. Gassner, David W. Zingg, Jason E. Hicken:
Conservative and Stable Degree Preserving SBP Operators for Non-conforming Meshes. J. Sci. Comput. 75(2): 657-686 (2018) - [j17]David A. Brown, David W. Zingg:
Matrix-free monolithic homotopy continuation with application to computational aerodynamics. Numer. Algorithms 78(4): 1303-1320 (2018) - 2017
- [j16]David C. Del Rey Fernández, Pieter D. Boom, David W. Zingg:
Corner-corrected diagonal-norm summation-by-parts operators for the first derivative with increased order of accuracy. J. Comput. Phys. 330: 902-923 (2017) - 2016
- [j15]David A. Brown, David W. Zingg:
Efficient numerical differentiation of implicitly-defined curves for sparse systems. J. Comput. Appl. Math. 304: 138-159 (2016) - [j14]David A. Brown, David W. Zingg:
A monolithic homotopy continuation algorithm with application to computational fluid dynamics. J. Comput. Phys. 321: 55-75 (2016) - [j13]Jason E. Hicken, David C. Del Rey Fernández, David W. Zingg:
Multidimensional Summation-by-Parts Operators: General Theory and Application to Simplex Elements. SIAM J. Sci. Comput. 38(4) (2016) - 2015
- [j12]Pieter D. Boom, David W. Zingg:
High-Order Implicit Time-Marching Methods Based on Generalized Summation-By-Parts Operators. SIAM J. Sci. Comput. 37(6) (2015) - [j11]David C. Del Rey Fernández, David W. Zingg:
Generalized Summation-by-Parts Operators for the Second Derivative. SIAM J. Sci. Comput. 37(6) (2015) - 2014
- [j10]Jason E. Hicken, David W. Zingg:
Dual consistency and functional accuracy: a finite-difference perspective. J. Comput. Phys. 256: 161-182 (2014) - [j9]David C. Del Rey Fernández, Pieter D. Boom, David W. Zingg:
A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266: 214-239 (2014) - [i1]David C. Del Rey Fernández, David W. Zingg:
Generalized Summation-by-Parts Operators for the Second Derivative with Variable Coefficients. CoRR abs/1410.5029 (2014) - 2013
- [j8]Jason E. Hicken, David W. Zingg:
Summation-by-parts operators and high-order quadrature. J. Comput. Appl. Math. 237(1): 111-125 (2013) - 2011
- [j7]Jason E. Hicken, David W. Zingg:
Superconvergent Functional Estimates from Summation-By-Parts Finite-Difference Discretizations. SIAM J. Sci. Comput. 33(2): 893-922 (2011) - 2010
- [j6]Jason E. Hicken, David W. Zingg:
A Simplified and Flexible Variant of GCROT for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Comput. 32(3): 1672-1694 (2010)
2000 – 2009
- 2009
- [j5]Todd T. Chisholm, David W. Zingg:
A Jacobian-free Newton-Krylov algorithm for compressible turbulent fluid flows. J. Comput. Phys. 228(9): 3490-3507 (2009) - 2001
- [j4]Henry M. Jurgens, David W. Zingg:
Numerical Solution of the Time-Domain Maxwell Equations Using High-Accuracy Finite-Difference Methods. SIAM J. Sci. Comput. 22(5): 1675-1696 (2001) - 2000
- [j3]David W. Zingg:
Comparison of High-Accuracy Finite-Difference Methods for Linear Wave Propagation. SIAM J. Sci. Comput. 22(2): 476-502 (2000)
1990 – 1999
- 1996
- [j2]David W. Zingg, Harvard Lomax, Henry M. Jurgens:
High-Accuracy Finite-Difference Schemes for Linear Wave Propagation. SIAM J. Sci. Comput. 17(2): 328-346 (1996) - 1992
- [j1]David W. Zingg, Maurice Yarrow:
A Method of Smooth Bivariate Interpolation for Data Given on a Generalized Curvilinear Grid. SIAM J. Sci. Comput. 13(3): 687-693 (1992)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 01:21 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint