


Остановите войну!
for scientists:


default search action
Xiaoning Qian
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [i32]Xihaier Luo, Sean McCorkle, Gilchan Park, Vanessa López-Marrero, Shinjae Yoo, Edward R. Dougherty, Xiaoning Qian, Francis J. Alexander, Byung-Jun Yoon:
Comprehensive analysis of gene expression profiles to radiation exposure reveals molecular signatures of low-dose radiation response. CoRR abs/2301.01769 (2023) - [i31]Cong Fu, Keqiang Yan, Limei Wang, Wing Yee Au, Michael McThrow, Tao Komikado, Koji Maruhashi, Kanji Uchino, Xiaoning Qian, Shuiwang Ji:
A Latent Diffusion Model for Protein Structure Generation. CoRR abs/2305.04120 (2023) - 2022
- [j80]Omar Maddouri
, Xiaoning Qian, Byung-Jun Yoon
:
Deep graph representations embed network information for robust disease marker identification. Bioinform. 38(4): 1075-1086 (2022) - [j79]Omar Maddouri
, Xiaoning Qian, Francis J. Alexander, Edward R. Dougherty, Byung-Jun Yoon
:
Robust importance sampling for error estimation in the context of optimal Bayesian transfer learning. Patterns 3(3): 100428 (2022) - [c84]Randy Ardywibowo, Shahin Boluki, Zhangyang Wang, Bobak J. Mortazavi, Shuai Huang, Xiaoning Qian:
VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition. AISTATS 2022: 1359-1379 - [c83]Xihaier Luo, Sean McCorkle, Gilchan Park, Vanessa López-Marrero, Shinjae Yoo, Edward R. Dougherty, Xiaoning Qian, Francis J. Alexander, Byung-Jun Yoon:
Comprehensive analysis of gene expression profiles to radiation exposure reveals molecular signatures of low-dose radiation response. BIBM 2022: 2366-2374 - [c82]Zepeng Huo, Taowei Ji, Yifei Liang, Shuai Huang, Zhangyang Wang, Xiaoning Qian, Bobak Mortazavi:
Dynimp: Dynamic Imputation for Wearable Sensing Data through Sensory and Temporal Relatedness. ICASSP 2022: 3988-3992 - [c81]Mingzhou Fan, Byung-Jun Yoon, Francis J. Alexander, Edward R. Dougherty, Xiaoning Qian:
Adaptive Group Testing with Mismatched Models. ICASSP 2022: 4533-4537 - [c80]Arman Hasanzadeh, Ehsan Hajiramezanali, Nick Duffield, Xiaoning Qian:
MoReL: Multi-omics Relational Learning. ICLR 2022 - [c79]Randy Ardywibowo, Zepeng Huo, Zhangyang Wang, Bobak J. Mortazavi, Shuai Huang, Xiaoning Qian:
VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian Novelty. ICML 2022: 865-877 - [c78]Zepeng Huo, Xiaoning Qian, Shuai Huang, Zhangyang Wang, Bobak J. Mortazavi:
Density-Aware Personalized Training for Risk Prediction in Imbalanced Medical Data. MLHC 2022: 101-122 - [c77]Yucheng Wang, Mengmeng Gu, Mingyuan Zhou, Xiaoning Qian:
Attention-Based Deep Bayesian Counting For AI-Augmented Agriculture. SenSys 2022: 1109-1115 - [i30]Arman Hasanzadeh, Ehsan Hajiramezanali, Nick Duffield, Xiaoning Qian:
MoReL: Multi-omics Relational Learning. CoRR abs/2203.08149 (2022) - [i29]Randy Ardywibowo, Shahin Boluki, Zhangyang Wang, Bobak Mortazavi, Shuai Huang, Xiaoning Qian:
VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition. CoRR abs/2204.00130 (2022) - [i28]Zepeng Huo, Xiaoning Qian, Shuai Huang, Zhangyang Wang, Bobak Mortazavi:
Density-Aware Personalized Training for Risk Prediction in Imbalanced Medical Data. CoRR abs/2207.11382 (2022) - [i27]Zepeng Huo, Taowei Ji, Yifei Liang, Shuai Huang, Zhangyang Wang, Xiaoning Qian, Bobak Mortazavi:
DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and Temporal Relatedness. CoRR abs/2209.15415 (2022) - 2021
- [j78]Byung-Jun Yoon
, Xiaoning Qian
, Edward R. Dougherty:
Quantifying the Multi-Objective Cost of Uncertainty. IEEE Access 9: 80351-80359 (2021) - [j77]Shahin Boluki
, Xiaoning Qian, Edward R. Dougherty:
Optimal Bayesian supervised domain adaptation for RNA sequencing data. Bioinform. 37(19): 3212-3219 (2021) - [j76]Ameer Hamza Shakur, Shuai Huang, Xiaoning Qian, Xiangyu Chang:
SURVFIT: Doubly sparse rule learning for survival data. J. Biomed. Informatics 117: 103691 (2021) - [j75]Xuan Dang
, Shuai Huang, Xiaoning Qian:
Risk Factor Identification in Heterogeneous Disease Progression with L1-Regularized Multi-state Models. J. Heal. Informatics Res. 5(1): 20-53 (2021) - [j74]Xuan Dang
, Shuai Huang, Xiaoning Qian:
Penalized Cox's proportional hazards model for high-dimensional survival data with grouped predictors. Stat. Comput. 31(6): 77 (2021) - [j73]Alireza Karbalayghareh
, Xiaoning Qian
, Edward R. Dougherty:
Optimal Bayesian Transfer Learning for Count Data. IEEE ACM Trans. Comput. Biol. Bioinform. 18(2): 644-655 (2021) - [c76]Ziyu Xiang, Mingzhou Fan, Guillermo Vázquez Tovar, William Trehern, Byung-Jun Yoon, Xiaofeng Qian
, Raymundo Arróyave, Xiaoning Qian:
Physics-constrained Automatic Feature Engineering for Predictive Modeling in Materials Science. AAAI 2021: 10414-10421 - [c75]Guang Zhao, Edward R. Dougherty, Byung-Jun Yoon, Francis J. Alexander, Xiaoning Qian:
Bayesian Active Learning by Soft Mean Objective Cost of Uncertainty. AISTATS 2021: 3970-3978 - [c74]Zepeng Huo, Lida Zhang, Rohan Khera, Shuai Huang, Xiaoning Qian, Zhangyang Wang, Bobak J. Mortazavi:
Sparse Gated Mixture-of-Experts to Separate and Interpret Patient Heterogeneity in EHR data. BHI 2021: 1-4 - [c73]Xinjie Fan, Shujian Zhang, Korawat Tanwisuth, Xiaoning Qian, Mingyuan Zhou:
Contextual Dropout: An Efficient Sample-Dependent Dropout Module. ICLR 2021 - [c72]Guang Zhao, Edward R. Dougherty, Byung-Jun Yoon, Francis J. Alexander, Xiaoning Qian:
Uncertainty-aware Active Learning for Optimal Bayesian Classifier. ICLR 2021 - [c71]Guang Zhao, Edward R. Dougherty, Byung-Jun Yoon, Francis J. Alexander, Xiaoning Qian:
Efficient Active Learning for Gaussian Process Classification by Error Reduction. NeurIPS 2021: 9734-9746 - [i26]Xinjie Fan, Shujian Zhang, Korawat Tanwisuth, Xiaoning Qian, Mingyuan Zhou:
Contextual Dropout: An Efficient Sample-Dependent Dropout Module. CoRR abs/2103.04181 (2021) - [i25]Omar Maddouri, Xiaoning Qian, Byung-Jun Yoon:
Geometric Affinity Propagation for Clustering with Network Knowledge. CoRR abs/2103.14376 (2021) - [i24]Omar Maddouri, Xiaoning Qian, Francis J. Alexander, Edward R. Dougherty, Byung-Jun Yoon:
Robust Importance Sampling for Error Estimation in the Context of Optimal Bayesian Transfer Learning. CoRR abs/2109.02150 (2021) - [i23]Hyun-Myung Woo, Xiaoning Qian, Li Tan, Shantenu Jha, Francis J. Alexander, Edward R. Dougherty, Byung-Jun Yoon:
Optimal Decision Making in High-Throughput Virtual Screening Pipelines. CoRR abs/2109.11683 (2021) - [i22]Seyednami Niyakan, Xiaoning Qian:
COVID-Datathon: Biomarker identification for COVID-19 severity based on BALF scRNA-seq data. CoRR abs/2110.04986 (2021) - 2020
- [j72]Yijie Wang, Hyundoo Jeong, Byung-Jun Yoon, Xiaoning Qian:
ClusterM: a scalable algorithm for computational prediction of conserved protein complexes across multiple protein interaction networks. BMC Genom. 21(S-10) (2020) - [j71]Meltem Apaydin, Liang Xu
, Bo Zeng, Xiaoning Qian:
Pessimistic optimisation for modelling microbial communities with uncertainty. Int. J. Comput. Biol. Drug Des. 13(1): 82-97 (2020) - [j70]Chung-Chi Tsai
, Kuang-Jui Hsu
, Yen-Yu Lin
, Xiaoning Qian
, Yung-Yu Chuang
:
Deep Co-Saliency Detection via Stacked Autoencoder-Enabled Fusion and Self-Trained CNNs. IEEE Trans. Multim. 22(4): 1016-1031 (2020) - [j69]Guang Zhao
, Xiaoning Qian
, Byung-Jun Yoon
, Francis J. Alexander, Edward R. Dougherty:
Model-Based Robust Filtering and Experimental Design for Stochastic Differential Equation Systems. IEEE Trans. Signal Process. 68: 3849-3859 (2020) - [c70]Zepeng Huo, Arash Pakbin, Xiaohan Chen, Nathan C. Hurley, Ye Yuan, Xiaoning Qian, Zhangyang Wang, Shuai Huang, Bobak Mortazavi:
Uncertainty Quantification for Deep Context-Aware Mobile Activity Recognition and Unknown Context Discovery. AISTATS 2020: 3894-3904 - [c69]Shahin Boluki, Randy Ardywibowo, Siamak Zamani Dadaneh, Mingyuan Zhou, Xiaoning Qian:
Learnable Bernoulli Dropout for Bayesian Deep Learning. AISTATS 2020: 3905-3916 - [c68]Qing Jin, Linjie Yang, Zhenyu Liao, Xiaoning Qian:
Neural Network Quantization with Scale-Adjusted Training. BMVC 2020 - [c67]Siamak Zamani Dadaneh, Shahin Boluki, Mingyuan Zhou, Xiaoning Qian:
Arsm Gradient Estimator for Supervised Learning to Rank. ICASSP 2020: 3157-3161 - [c66]Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield
, Krishna Narayanan, Mingyuan Zhou, Xiaoning Qian:
Semi-Implicit Stochastic Recurrent Neural Networks. ICASSP 2020: 3342-3346 - [c65]Randy Ardywibowo, Shahin Boluki, Xinyu Gong, Zhangyang Wang, Xiaoning Qian:
NADS: Neural Architecture Distribution Search for Uncertainty Awareness. ICML 2020: 356-366 - [c64]Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna Narayanan, Xiaoning Qian:
Bayesian Graph Neural Networks with Adaptive Connection Sampling. ICML 2020: 4094-4104 - [c63]Ameer Hamza Shakur, Xiaoning Qian, Zhangyang Wang, Bobak Mortazavi, Shuai Huang:
GPSRL: Learning Semi-Parametric Bayesian Survival Rule Lists from Heterogeneous Patient Data. ICPR 2020: 10608-10615 - [c62]Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield, Krishna Narayanan, Xiaoning Qian:
BayReL: Bayesian Relational Learning for Multi-omics Data Integration. NeurIPS 2020 - [c61]Siamak Zamani Dadaneh, Shahin Boluki, Mingzhang Yin, Mingyuan Zhou, Xiaoning Qian:
Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and Self-Control Gradient Estimator. UAI 2020: 540-549 - [i21]Shahin Boluki, Randy Ardywibowo, Siamak Zamani Dadaneh, Mingyuan Zhou, Xiaoning Qian:
Learnable Bernoulli Dropout for Bayesian Deep Learning. CoRR abs/2002.05155 (2020) - [i20]Zepeng Huo, Arash Pakbin, Xiaohan Chen, Nathan C. Hurley, Ye Yuan, Xiaoning Qian, Zhangyang Wang, Shuai Huang, Bobak Mortazavi:
Uncertainty Quantification for Deep Context-Aware Mobile Activity Recognition and Unknown Context Discovery. CoRR abs/2003.01753 (2020) - [i19]Siamak Zamani Dadaneh, Shahin Boluki, Mingzhang Yin, Mingyuan Zhou, Xiaoning Qian:
Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and Self-Control Gradient Estimator. CoRR abs/2005.10477 (2020) - [i18]Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield
, Krishna Narayanan, Xiaoning Qian:
Bayesian Graph Neural Networks with Adaptive Connection Sampling. CoRR abs/2006.04064 (2020) - [i17]Randy Ardywibowo, Shahin Boluki, Xinyu Gong, Zhangyang Wang, Xiaoning Qian:
NADS: Neural Architecture Distribution Search for Uncertainty Awareness. CoRR abs/2006.06646 (2020) - [i16]Byung-Jun Yoon, Xiaoning Qian, Edward R. Dougherty:
Quantifying the multi-objective cost of uncertainty. CoRR abs/2010.04653 (2020) - [i15]Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield, Krishna R. Narayanan, Xiaoning Qian:
BayReL: Bayesian Relational Learning for Multi-omics Data Integration. CoRR abs/2010.05895 (2020)
2010 – 2019
- 2019
- [j68]Shahin Boluki
, Xiaoning Qian, Edward R. Dougherty:
Experimental Design via Generalized Mean Objective Cost of Uncertainty. IEEE Access 7: 2223-2230 (2019) - [j67]Chun-Chi Chen, Xiaoning Qian, Byung-Jun Yoon:
RNAdetect: efficient computational detection of novel non-coding RNAs. Bioinform. 35(7): 1133-1141 (2019) - [j66]Siamak Zamani Dadaneh, Mingyuan Zhou, Xiaoning Qian:
Bayesian negative binomial regression for differential expression with confounding factors. Bioinform. 35(13): 2346 (2019) - [j65]Chun-Chi Chen, Hyundoo Jeong, Xiaoning Qian, Byung-Jun Yoon:
TOPAS: network-based structural alignment of RNA sequences. Bioinform. 35(17): 2941-2948 (2019) - [j64]Byung-Jun Yoon, Xiaoning Qian, Tamer Kahveci, Ranadip Pal
:
Selected research articles from the 2018 International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC). BMC Bioinform. 20-S(12): 316:1-316:3 (2019) - [j63]Shahin Boluki, Siamak Zamani Dadaneh, Xiaoning Qian, Edward R. Dougherty:
Optimal clustering with missing values. BMC Bioinform. 20-S(12): 321:1-321:10 (2019) - [j62]Kai He
, Shuai Huang, Xiaoning Qian
:
Early detection and risk assessment for chronic disease with irregular longitudinal data analysis. J. Biomed. Informatics 96 (2019) - [j61]Tianshu Feng
, Xiaoning Qian
, Kaibo Liu
, Shuai Huang
:
Dynamic Inspection of Latent Variables in State-Space Systems. IEEE Trans Autom. Sci. Eng. 16(3): 1232-1243 (2019) - [j60]Shahin Boluki
, Mohammad Shahrokh Esfahani
, Xiaoning Qian
, Edward R. Dougherty:
Constructing Pathway-Based Priors within a Gaussian Mixture Model for Bayesian Regression and Classification. IEEE ACM Trans. Comput. Biol. Bioinform. 16(2): 524-537 (2019) - [j59]Chung-Chi Tsai
, Weizhi Li, Kuang-Jui Hsu
, Xiaoning Qian
, Yen-Yu Lin
:
Image Co-Saliency Detection and Co-Segmentation via Progressive Joint Optimization. IEEE Trans. Image Process. 28(1): 56-71 (2019) - [c60]Randy Ardywibowo, Guang Zhao, Zhangyang Wang, Bobak Mortazavi, Shuai Huang, Xiaoning Qian:
Adaptive Activity Monitoring with Uncertainty Quantification in Switching Gaussian Process Models. AISTATS 2019: 266-275 - [c59]Wuyang Chen, Ziyu Jiang, Zhangyang Wang, Kexin Cui, Xiaoning Qian:
Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-High Resolution Images. CVPR 2019: 8924-8933 - [c58]Xiaoqian Jia, Sicheng Wang, Xiao Liang, Anjali Balagopal, Dan Nguyen, Ming Yang, Zhangyang Wang, Jim Xiuquan Ji, Xiaoning Qian, Steve B. Jiang:
Cone-Beam Computed Tomography (CBCT) Segmentation by Adversarial Learning Domain Adaptation. MICCAI (6) 2019: 567-575 - [c57]Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna R. Narayanan, Nick Duffield, Mingyuan Zhou, Xiaoning Qian:
Variational Graph Recurrent Neural Networks. NeurIPS 2019: 10700-10710 - [c56]Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna R. Narayanan, Nick Duffield, Mingyuan Zhou, Xiaoning Qian:
Semi-Implicit Graph Variational Auto-Encoders. NeurIPS 2019: 10711-10722 - [i14]Randy Ardywibowo, Guang Zhao, Zhangyang Wang, Bobak Mortazavi, Shuai Huang, Xiaoning Qian:
Adaptive Activity Monitoring with Uncertainty Quantification in Switching Gaussian Process Models. CoRR abs/1901.02427 (2019) - [i13]Shahin Boluki, Siamak Zamani Dadaneh, Xiaoning Qian, Edward R. Dougherty:
Optimal Clustering with Missing Values. CoRR abs/1902.09694 (2019) - [i12]Wuyang Chen, Ziyu Jiang, Zhangyang Wang, Kexin Cui, Xiaoning Qian:
Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-High Resolution Images. CoRR abs/1905.06368 (2019) - [i11]Arman Hasanzadeh, Ehsan Hajiramezanali, Nick Duffield
, Krishna R. Narayanan, Mingyuan Zhou, Xiaoning Qian:
Semi-Implicit Graph Variational Auto-Encoders. CoRR abs/1908.07078 (2019) - [i10]Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield
, Krishna R. Narayanan, Mingyuan Zhou, Xiaoning Qian:
Variational Graph Recurrent Neural Networks. CoRR abs/1908.09710 (2019) - [i9]Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield, Krishna R. Narayanan, Mingyuan Zhou, Xiaoning Qian:
Semi-Implicit Stochastic Recurrent Neural Networks. CoRR abs/1910.12819 (2019) - [i8]Siamak Zamani Dadaneh, Shahin Boluki, Mingyuan Zhou, Xiaoning Qian:
ARSM Gradient Estimator for Supervised Learning to Rank. CoRR abs/1911.00465 (2019) - 2018
- [j58]Siamak Zamani Dadaneh, Mingyuan Zhou, Xiaoning Qian:
Covariate-dependent negative binomial factor analysis of RNA sequencing data. Bioinform. 34(13): i61-i69 (2018) - [j57]Siamak Zamani Dadaneh, Mingyuan Zhou, Xiaoning Qian:
Bayesian negative binomial regression for differential expression with confounding factors. Bioinform. 34(19): 3349-3356 (2018) - [j56]Byung-Jun Yoon, Xiaoning Qian, Tamer Kahveci, Ranadip Pal
:
Selected research articles from the 2017 International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC). BMC Bioinform. 19-S(3): 69:1-69:4 (2018) - [j55]Roozbeh Dehghannasiri
, Xiaoning Qian, Edward R. Dougherty:
A Bayesian robust Kalman smoothing framework for state-space models with uncertain noise statistics. EURASIP J. Adv. Signal Process. 2018: 55 (2018) - [j54]Randy Ardywibowo
, Shuai Huang, Shupeng Gui, Cao Xiao, Yu Cheng, Ji Liu, Xiaoning Qian:
Switching-State Dynamical Modeling of Daily Behavioral Data. J. Heal. Informatics Res. 2(3): 228-247 (2018) - [j53]Shaogang Ren
, Shuai Huang
, Jieping Ye, Xiaoning Qian
:
Safe Feature Screening for Generalized LASSO. IEEE Trans. Pattern Anal. Mach. Intell. 40(12): 2992-3006 (2018) - [j52]Xiaopeng Lucia Sui
, Li Xu, Xiaoning Qian, Tie Liu:
Convex clustering with metric learning. Pattern Recognit. 81: 575-584 (2018) - [j51]Roozbeh Dehghannasiri, Xiaoning Qian, Edward R. Dougherty:
Intrinsically Bayesian robust Karhunen-Loève compression. Signal Process. 144: 311-322 (2018) - [j50]Alireza Karbalayghareh
, Xiaoning Qian
, Edward R. Dougherty:
Optimal Bayesian Transfer Regression. IEEE Signal Process. Lett. 25(11): 1655-1659 (2018) - [j49]Ying Lin, Kaibo Liu, Eunshin Byon
, Xiaoning Qian
, Shan Liu, Shuai Huang
:
A Collaborative Learning Framework for Estimating Many Individualized Regression Models in a Heterogeneous Population. IEEE Trans. Reliab. 67(1): 328-341 (2018) - [j48]Roozbeh Dehghannasiri
, Mohammad Shahrokh Esfahani
, Xiaoning Qian
, Edward R. Dougherty:
Optimal Bayesian Kalman Filtering With Prior Update. IEEE Trans. Signal Process. 66(8): 1982-1996 (2018) - [j47]Alireza Karbalayghareh
, Xiaoning Qian
, Edward R. Dougherty:
Optimal Bayesian Transfer Learning. IEEE Trans. Signal Process. 66(14): 3724-3739 (2018) - [j46]Siamak Zamani Dadaneh
, Edward R. Dougherty, Xiaoning Qian
:
Optimal Bayesian Classification With Missing Values. IEEE Trans. Signal Process. 66(16): 4182-4192 (2018) - [c55]Roozbeh Dehghannasiri, Xiaoning Qian, Edward R. Dougherty:
Robust Smoothing for State-Space Models with Unknown Noise Statistics. ACSSC 2018: 1024-1028 - [c54]Shahin Boluki, Siamak Zamani Dadaneh, Xiaoning Qian, Edward R. Dougherty:
Optimal Clustering with Missing Values. BCB 2018: 593-594 - [c53]Ehsan Hajiramezanali, Mahdi Imani, Ulisses M. Braga-Neto, Xiaoning Qian, Edward R. Dougherty:
Scalable Optimal Bayesian Classification of Single-Cell Trajectories under Regulatory Model Uncertainty. BCB 2018: 596-597 - [c52]Kuang-Jui Hsu
, Chung-Chi Tsai
, Yen-Yu Lin
, Xiaoning Qian
, Yung-Yu Chuang
:
Unsupervised CNN-Based Co-saliency Detection with Graphical Optimization. ECCV (5) 2018: 502-518 - [c51]Yixin Fang, Ruoming Jin, Wei Xiong, Xiaoning Qian, Dejing Dou, Hai Phan:
Recursive Structure Similarity: A Novel Algorithm for Graph Clustering. ICTAI 2018: 395-400 - [c50]Ehsan Hajiramezanali, Siamak Zamani Dadaneh, Alireza Karbalayghareh, Mingyuan Zhou, Xiaoning Qian:
Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data. NeurIPS 2018: 9133-9142 - [i7]Alireza Karbalayghareh, Xiaoning Qian, Edward R. Dougherty:
Optimal Bayesian Transfer Learning. CoRR abs/1801.00857 (2018) - [i6]Shaogang Ren, Jianhua Z. Huang, Shuai Huang, Xiaoning Qian:
Safe Active Feature Selection for Sparse Learning. CoRR abs/1806.05817 (2018) - [i5]Ehsan Hajiramezanali, Siamak Zamani Dadaneh, Alireza Karbalayghareh, Mingyuan Zhou, Xiaoning Qian:
Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data. CoRR abs/1810.09433 (2018) - [i4]Guang Zhao, Raymundo Arróyave, Xiaoning Qian:
Fast Exact Computation of Expected HyperVolume Improvement. CoRR abs/1812.07692 (2018) - 2017
- [j45]Shahin Boluki, Mohammad Shahrokh Esfahani
, Xiaoning Qian, Edward R. Dougherty:
Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors. BMC Bioinform. 18(14): 61-80 (2017) - [j44]Chun-Chi Chen, Xiaoning Qian, Byung-Jun Yoon:
Effective computational detection of piRNAs using n-gram models and support vector machine. BMC Bioinform. 18(14): 103-109 (2017) - [j43]Hyundoo Jeong, Xiaoning Qian, Byung-Jun Yoon:
CUFID-query: accurate network querying through random walk based network flow estimation. BMC Bioinform. 18(14): 133-146 (2017) - [j42]Byung-Jun Yoon, Xiaoning Qian, Tamer Kahveci:
Selected research articles from the 2016 International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC). BMC Bioinform. 18(S-4): 1-3 (2017) - [j41]Yijie Wang, Xiaoning Qian:
Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction. BMC Syst. Biol. 11(3): 22:1-22:11 (2017) - [j40]Chun-Chi Chen, Noushin Ghaffari, Xiaoning Qian, Byung-Jun Yoon:
Optimal hybrid sequencing and assembly: Feasibility conditions for accurate genome reconstruction and cost minimization strategy. Comput. Biol. Chem. 69: 153-163 (2017) - [j39]Roozbeh Dehghannasiri, Xiaoning Qian, Edward R. Dougherty:
Optimal experimental design in the context of canonical expansions. IET Signal Process. 11(8): 942-951 (2017) - [j38]Chuyang Ke, Yan Jin, Heather L. Evans
, Bill Lober, Xiaoning Qian, Ji Liu, Shuai Huang:
Prognostics of surgical site infections using dynamic health data. J. Biomed. Informatics 65: 22-33 (2017) - [j37]Yijun Huang, Qiang Meng, Heather L. Evans
, William B. Lober, Yu Cheng, Xiaoning Qian, Ji Liu, Shuai Huang:
CHI: A contemporaneous health index for degenerative disease monitoring using longitudinal measurements. J. Biomed. Informatics 73: 115-124 (2017) - [j36]Amin Ahmadi Adl
, Hye-Seung Lee, Xiaoning Qian:
Detecting Pairwise Interactive Effects of Continuous Random Variables for Biomarker Identification with Small Sample Size. IEEE ACM Trans. Comput. Biol. Bioinform. 14(6): 1265-1275 (2017) - [j35]Easton Li Xu, Xiaoning Qian
, Tie Liu, Shuguang Cui:
Detection of Cooperative Interactions in Logistic Regression Models. IEEE Trans. Signal Process. 65(7): 1765-1780 (2017) - [c49]Roozbeh Dehghannasiri, Mohammad Shahrokh Esfahani, Xiaoning Qian, Edward R. Dougherty:
Bayesian Kalman filtering in the presence of unknown noise statistics using factor graphs. ACSSC 2017: 166-170 - [c48]Roozbeh Dehghannasiri, Xiaoning Qian, Edward R. Dougherty:
An objective-based experimental design framework for signal processing in the context of canonical expansions. ACSSC 2017: 789-793 - [c47]Byung-Jun Yoon, Xiaoning Qian, Tamer Kahveci:
CNB-MAC'17: The Fourth International Workshop on Computational Network Biology: Modeling, Analysis, and Control. BCB 2017: 750 - [c46]Easton Li Xu, Xiaoning Qian, Qilian Yu, Han Zhang, Shuguang Cui:
Feature Selection with Interactions in Logistic Regression Models using Multivariate Synergies for a GWAS Application. BCB 2017: 760-761 - [c45]Chung-Chi Tsai
, Xiaoning Qian, Yen-Yu Lin
:
Image co-saliency detection via locally adaptive saliency map fusion. ICASSP 2017: 1897-1901 - [c44]Weizhi Li, Xiaoning Qian, Jim Jing-Yan Ji:
Noise-tolerant deep learning for histopathological image segmentation. ICIP 2017: 3075-3079 - [c43]Chung-Chi Tsai
, Xiaoning Qian, Yen-Yu Lin
:
Segmentation guided local proposal fusion for co-saliency detection. ICME 2017: 523-528 - 2016
- [j34]Hyundoo Jeong, Xiaoning Qian, Byung-Jun Yoon:
Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model. BMC Bioinform. 17(S-13): 395 (2016) - [j33]