
Anima Anandkumar
Animashree Anandkumar
Person information
- affiliation: University of California Irvine, Center for Pervasive Communications and Computing
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [j31]Yashwanth Kumar Nakka
, Anqi Liu, Guanya Shi
, Anima Anandkumar, Yisong Yue, Soon-Jo Chung
:
Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems. IEEE Robotics Autom. Lett. 6(1): 389-396 (2021) - [i128]Anqi Liu, Hao Liu, Tongxin Li, Saeed Karimi-Bidhendi, Yisong Yue, Anima Anandkumar:
Disentangling Observed Causal Effects from Latent Confounders using Method of Moments. CoRR abs/2101.06614 (2021) - [i127]Maya Srikanth, Anqi Liu, Nicholas Adams-Cohen, Jian Cao, R. Michael Alvarez, Anima Anandkumar:
Dynamic Social Media Monitoring for Fast-Evolving Online Discussions. CoRR abs/2102.12596 (2021) - 2020
- [j30]Jean Kossaifi, Zachary C. Lipton, Arinbjörn Kolbeinsson, Aran Khanna, Tommaso Furlanello, Anima Anandkumar:
Tensor Regression Networks. J. Mach. Learn. Res. 21: 123:1-123:21 (2020) - [c91]Francesca Baldini, Animashree Anandkumar, Richard M. Murray:
Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data. ACC 2020: 2961-2966 - [c90]Yang Shi, Animashree Anandkumar:
Higher-Order Count Sketch: Dimensionality Reduction that Retains Efficient Tensor Operations. DCC 2020: 394 - [c89]Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul Puri, Pascale Fung, Anima Anandkumar, Bryan Catanzaro:
MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models. EMNLP (1) 2020: 2831-2845 - [c88]Beidi Chen, Weiyang Liu, Zhiding Yu, Jan Kautz, Anshumali Shrivastava, Animesh Garg, Animashree Anandkumar:
Angular Visual Hardness. ICML 2020: 1637-1648 - [c87]Wuyang Chen, Zhiding Yu, Zhangyang Wang, Animashree Anandkumar:
Automated Synthetic-to-Real Generalization. ICML 2020: 1746-1756 - [c86]Weili Nie, Tero Karras, Animesh Garg, Shoubhik Debnath, Anjul Patney, Ankit B. Patel, Animashree Anandkumar:
Semi-Supervised StyleGAN for Disentanglement Learning. ICML 2020: 7360-7369 - [c85]Florian Schäfer, Hongkai Zheng, Animashree Anandkumar:
Implicit competitive regularization in GANs. ICML 2020: 8533-8544 - [c84]Anqi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue:
Robust Regression for Safe Exploration in Control. L4DC 2020: 608-619 - [c83]Jeremy Bernstein, Jiawei Zhao, Markus Meister, Ming-Yu Liu, Anima Anandkumar, Yisong Yue:
Learning compositional functions via multiplicative weight updates. NeurIPS 2020 - [c82]Yujia Huang, James Gornet, Sihui Dai, Zhiding Yu, Tan M. Nguyen, Doris Y. Tsao, Anima Anandkumar:
Neural Networks with Recurrent Generative Feedback. NeurIPS 2020 - [c81]Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, Anima Anandkumar:
Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems. NeurIPS 2020 - [c80]Yunzhu Li, Antonio Torralba, Anima Anandkumar, Dieter Fox, Animesh Garg:
Causal Discovery in Physical Systems from Videos. NeurIPS 2020 - [c79]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew M. Stuart, Kaushik Bhattacharya, Anima Anandkumar:
Multipole Graph Neural Operator for Parametric Partial Differential Equations. NeurIPS 2020 - [c78]Weili Nie, Zhiding Yu, Lei Mao, Ankit B. Patel, Yuke Zhu, Anima Anandkumar:
Bongard-LOGO: A New Benchmark for Human-Level Concept Learning and Reasoning. NeurIPS 2020 - [c77]Jiahao Su, Wonmin Byeon, Jean Kossaifi, Furong Huang, Jan Kautz, Anima Anandkumar:
Convolutional Tensor-Train LSTM for Spatio-Temporal Learning. NeurIPS 2020 - [c76]Chiyu Max Jiang, Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A. Tchelepi, Philip Marcus, Prabhat, Anima Anandkumar:
MeshfreeFlowNet: a physics-constrained deep continuous space-time super-resolution framework. SC 2020: 9 - [c75]Hongyu Ren, Yuke Zhu, Jure Leskovec, Animashree Anandkumar, Animesh Garg:
OCEAN: Online Task Inference for Compositional Tasks with Context Adaptation. UAI 2020: 1378-1387 - [i126]Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, Anima Anandkumar:
Regret Minimization in Partially Observable Linear Quadratic Control. CoRR abs/2002.00082 (2020) - [i125]Jiahao Su, Wonmin Byeon, Furong Huang, Jan Kautz, Animashree Anandkumar:
Convolutional Tensor-Train LSTM for Spatio-temporal Learning. CoRR abs/2002.09131 (2020) - [i124]Weili Nie, Tero Karras, Animesh Garg, Shoubhik Debnath, Anjul Patney, Ankit B. Patel, Anima Anandkumar:
Semi-Supervised StyleGAN for Disentanglement Learning. CoRR abs/2003.03461 (2020) - [i123]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Neural Operator: Graph Kernel Network for Partial Differential Equations. CoRR abs/2003.03485 (2020) - [i122]Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, Anima Anandkumar:
Regret Bound of Adaptive Control in Linear Quadratic Gaussian (LQG) Systems. CoRR abs/2003.05999 (2020) - [i121]Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, Anima Anandkumar:
Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems. CoRR abs/2003.11227 (2020) - [i120]Majid Janzamin, Rong Ge, Jean Kossaifi, Anima Anandkumar:
Spectral Learning on Matrices and Tensors. CoRR abs/2004.07984 (2020) - [i119]Chiyu Max Jiang, Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A. Tchelepi, Philip Marcus, Prabhat, Anima Anandkumar:
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework. CoRR abs/2005.01463 (2020) - [i118]Yashwanth Kumar Nakka, Anqi Liu, Guanya Shi, Anima Anandkumar, Yisong Yue, Soon-Jo Chung:
Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems. CoRR abs/2005.04374 (2020) - [i117]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Multipole Graph Neural Operator for Parametric Partial Differential Equations. CoRR abs/2006.09535 (2020) - [i116]Florian Schäfer, Anima Anandkumar, Houman Owhadi:
Competitive Mirror Descent. CoRR abs/2006.10179 (2020) - [i115]Manish Prajapat
, Kamyar Azizzadenesheli, Alexander Liniger, Yisong Yue, Anima Anandkumar:
Competitive Policy Optimization. CoRR abs/2006.10611 (2020) - [i114]Jeremy Bernstein, Jiawei Zhao, Markus Meister, Ming-Yu Liu, Anima Anandkumar, Yisong Yue:
Learning compositional functions via multiplicative weight updates. CoRR abs/2006.14560 (2020) - [i113]Ravi Tej Akella, Kamyar Azizzadenesheli, Mohammad Ghavamzadeh, Anima Anandkumar, Yisong Yue:
Deep Bayesian Quadrature Policy Optimization. CoRR abs/2006.15637 (2020) - [i112]Yunzhu Li, Antonio Torralba, Animashree Anandkumar, Dieter Fox, Animesh Garg:
Causal Discovery in Physical Systems from Videos. CoRR abs/2007.00631 (2020) - [i111]Wuyang Chen, Zhiding Yu, Zhangyang Wang, Anima Anandkumar:
Automated Synthetic-to-Real Generalization. CoRR abs/2007.06965 (2020) - [i110]Zhuoran Qiao, Matthew Welborn, Animashree Anandkumar, Frederick R. Manby, Thomas F. Miller III:
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features. CoRR abs/2007.08026 (2020) - [i109]Eric Zhao
, Anqi Liu, Animashree Anandkumar, Yisong Yue:
Active Learning under Label Shift. CoRR abs/2007.08479 (2020) - [i108]Yujia Huang, James Gornet, Sihui Dai, Zhiding Yu, Tan M. Nguyen, Doris Y. Tsao, Anima Anandkumar:
Neural Networks with Recurrent Generative Feedback. CoRR abs/2007.09200 (2020) - [i107]Grigorios G. Chrysos, Jean Kossaifi, Zhiding Yu, Anima Anandkumar:
Unsupervised Controllable Generation with Self-Training. CoRR abs/2007.09250 (2020) - [i106]Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, Anima Anandkumar:
Explore More and Improve Regret in Linear Quadratic Regulators. CoRR abs/2007.12291 (2020) - [i105]Hongyu Ren, Yuke Zhu, Jure Leskovec, Anima Anandkumar, Animesh Garg:
OCEAN: Online Task Inference for Compositional Tasks with Context Adaptation. CoRR abs/2008.07087 (2020) - [i104]Francisco Luongo, Ryan Hakim, Jessica H. Nguyen, Animashree Anandkumar, Andrew J. Hung:
Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery. CoRR abs/2008.11833 (2020) - [i103]Xingye Da, Zhaoming Xie, David Hoeller, Byron Boots, Animashree Anandkumar, Yuke Zhu, Buck Babich, Animesh Garg:
Learning a Contact-Adaptive Controller for Robust, Efficient Legged Locomotion. CoRR abs/2009.10019 (2020) - [i102]Weili Nie, Zhiding Yu, Lei Mao, Ankit B. Patel, Yuke Zhu, Animashree Anandkumar:
Bongard-LOGO: A New Benchmark for Human-Level Concept Learning and Reasoning. CoRR abs/2010.00763 (2020) - [i101]Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul Puri, Pascale Fung, Anima Anandkumar, Bryan Catanzaro:
MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models. CoRR abs/2010.00840 (2020) - [i100]Haoxuan Wang, Anqi Liu, Zhiding Yu, Yisong Yue, Anima Anandkumar:
Distributionally Robust Learning for Unsupervised Domain Adaptation. CoRR abs/2010.05784 (2020) - [i99]Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew M. Stuart, Anima Anandkumar:
Fourier Neural Operator for Parametric Partial Differential Equations. CoRR abs/2010.08895 (2020) - [i98]Zhuoran Qiao, Feizhi Ding, Matthew Welborn, Peter J. Bygrave, Daniel G. A. Smith, Animashree Anandkumar, Frederick R. Manby, Thomas F. Miller III:
Multi-task learning for electronic structure to predict and explore molecular potential energy surfaces. CoRR abs/2011.02680 (2020) - [i97]Guanya Shi, Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, Fabio Ramos, Animashree Anandkumar, Yuke Zhu:
Fast Uncertainty Quantification for Deep Object Pose Estimation. CoRR abs/2011.07748 (2020) - [i96]Sahin Lale, Oguzhan Teke, Babak Hassibi, Anima Anandkumar:
Stability and Identification of Random Asynchronous Linear Time-Invariant Systems. CoRR abs/2012.04160 (2020) - [i95]Xinlei Pan, Animesh Garg, Animashree Anandkumar, Yuke Zhu:
Emergent Hand Morphology and Control from Optimizing Robust Grasps of Diverse Objects. CoRR abs/2012.12209 (2020)
2010 – 2019
- 2019
- [j29]Majid Janzamin, Rong Ge, Jean Kossaifi, Anima Anandkumar:
Spectral Learning on Matrices and Tensors. Found. Trends Mach. Learn. 12(5-6): 393-536 (2019) - [j28]Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, Maja Pantic:
TensorLy: Tensor Learning in Python. J. Mach. Learn. Res. 20: 26:1-26:6 (2019) - [c74]Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, Animashree Anandkumar:
Regularized Learning for Domain Adaptation under Label Shifts. ICLR (Poster) 2019 - [c73]Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, Anima Anandkumar:
signSGD with Majority Vote is Communication Efficient and Fault Tolerant. ICLR (Poster) 2019 - [c72]Peiyun Hu, Zachary C. Lipton, Anima Anandkumar, Deva Ramanan:
Active Learning with Partial Feedback. ICLR (Poster) 2019 - [c71]Milan Cvitkovic, Badal Singh, Animashree Anandkumar:
Open Vocabulary Learning on Source Code with a Graph-Structured Cache. ICML 2019: 1475-1485 - [c70]Shobhit Jain, Sravan Babu Bodapati, Ramesh Nallapati, Anima Anandkumar:
Multi Sense Embeddings from Topic Models. ICNLSP 2019: 34-41 - [c69]Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree Anandkumar, Yisong Yue, Soon-Jo Chung:
Neural Lander: Stable Drone Landing Control Using Learned Dynamics. ICRA 2019: 9784-9790 - [c68]Florian Schäfer, Anima Anandkumar:
Competitive Gradient Descent. NeurIPS 2019: 7623-7633 - [c67]Furong Huang, U. N. Niranjan, Ioakeim Perros, Robert Chen, Jimeng Sun, Anima Anandkumar:
Guaranteed Scalable Learning of Latent Tree Models. UAI 2019: 883-893 - [i94]Sahin Lale, Kamyar Azizzadenesheli, Anima Anandkumar, Babak Hassibi:
Stochastic Linear Bandits with Hidden Low Rank Structure. CoRR abs/1901.09490 (2019) - [i93]Yang Shi, Animashree Anandkumar:
Multi-dimensional Tensor Sketch. CoRR abs/1901.11261 (2019) - [i92]Arinbjörn Kolbeinsson, Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, Ioanna Tzoulaki, Paul Matthews:
Stochastically Rank-Regularized Tensor Regression Networks. CoRR abs/1902.10758 (2019) - [i91]Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, Animashree Anandkumar:
Regularized Learning for Domain Adaptation under Label Shifts. CoRR abs/1903.09734 (2019) - [i90]Florian Schäfer, Anima Anandkumar:
Competitive Gradient Descent. CoRR abs/1905.12103 (2019) - [i89]Anqi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue:
Robust Regression for Safe Exploration in Control. CoRR abs/1906.05819 (2019) - [i88]Amy Zhang
, Zachary C. Lipton, Luis Pineda, Kamyar Azizzadenesheli, Anima Anandkumar, Laurent Itti, Joelle Pineau, Tommaso Furlanello:
Learning Causal State Representations of Partially Observable Environments. CoRR abs/1906.10437 (2019) - [i87]Zachary E. Ross, Daniel T. Trugman, Kamyar Azizzadenesheli, Anima Anandkumar:
Directivity Modes of Earthquake Populations with Unsupervised Learning. CoRR abs/1907.00496 (2019) - [i86]Yujia Huang, Sihui Dai, Tan M. Nguyen, Richard G. Baraniuk, Anima Anandkumar:
Out-of-Distribution Detection Using Neural Rendering Generative Models. CoRR abs/1907.04572 (2019) - [i85]Shobhit Jain, Sravan Babu Bodapati, Ramesh Nallapati, Anima Anandkumar:
Multi Sense Embeddings from Topic Models. CoRR abs/1909.07746 (2019) - [i84]Florian Schäfer, Hongkai Zheng, Anima Anandkumar:
Implicit competitive regularization in GANs. CoRR abs/1910.05852 (2019) - [i83]Forough Arabshahi, Zhichu Lu, Sameer Singh, Animashree Anandkumar:
Memory Augmented Recursive Neural Networks. CoRR abs/1911.01545 (2019) - [i82]Anqi Liu, Maya Srikanth, Nicholas Adams-Cohen
, R. Michael Alvarez, Anima Anandkumar:
Finding Social Media Trolls: Dynamic Keyword Selection Methods for Rapidly-Evolving Online Debates. CoRR abs/1911.05332 (2019) - [i81]Anqi Liu, Hao Liu, Anima Anandkumar, Yisong Yue:
Triply Robust Off-Policy Evaluation. CoRR abs/1911.05811 (2019) - [i80]Beidi Chen, Weiyang Liu, Animesh Garg, Zhiding Yu, Anshumali Shrivastava, Jan Kautz, Anima Anandkumar:
Angular Visual Hardness. CoRR abs/1912.02279 (2019) - [i79]Tan M. Nguyen, Animesh Garg, Richard G. Baraniuk, Anima Anandkumar:
InfoCNF: An Efficient Conditional Continuous Normalizing Flow with Adaptive Solvers. CoRR abs/1912.03978 (2019) - [i78]Francesca Baldini, Animashree Anandkumar, Richard M. Murray:
Learning Pose Estimation for UAV Autonomous Navigation andLanding Using Visual-Inertial Sensor Data. CoRR abs/1912.04527 (2019) - 2018
- [j27]Evrim Acar, Animashree Anandkumar, Lenore Mullin, Sebnem Rusitschka, Volker Tresp:
Tensor Computing for Internet of Things (Dagstuhl Perspectives Workshop 16152). Dagstuhl Manifestos 7(1): 52-68 (2018) - [c66]Ben Athiwaratkun, Andrew Gordon Wilson, Anima Anandkumar:
Probabilistic FastText for Multi-Sense Word Embeddings. ACL (1) 2018: 1-11 - [c65]Yang Shi, Tommaso Furlanello, Sheng Zha, Animashree Anandkumar:
Question Type Guided Attention in Visual Question Answering. ECCV (4) 2018: 158-175 - [c64]Forough Arabshahi, Sameer Singh, Animashree Anandkumar:
Combining Symbolic Expressions and Black-box Function Evaluations in Neural Programs. ICLR (Poster) 2018 - [c63]Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, Anima Anandkumar:
Compression by the signs: distributed learning is a two-way street. ICLR (Workshop) 2018 - [c62]Guneet S. Dhillon, Kamyar Azizzadenesheli, Zachary C. Lipton, Jeremy Bernstein, Jean Kossaifi, Aran Khanna, Animashree Anandkumar:
Stochastic Activation Pruning for Robust Adversarial Defense. ICLR (Poster) 2018 - [c61]Ashish Khetan, Zachary C. Lipton, Animashree Anandkumar:
Learning From Noisy Singly-labeled Data. ICLR (Poster) 2018 - [c60]Yanyao Shen, Hyokun Yun, Zachary C. Lipton, Yakov Kronrod, Animashree Anandkumar:
Deep Active Learning for Named Entity Recognition. ICLR (Poster) 2018 - [c59]Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, Animashree Anandkumar:
SIGNSGD: Compressed Optimisation for Non-Convex Problems. ICML 2018: 559-568 - [c58]Tommaso Furlanello, Zachary Chase Lipton, Michael Tschannen, Laurent Itti, Anima Anandkumar:
Born-Again Neural Networks. ICML 2018: 1602-1611 - [c57]Michael Tschannen, Aran Khanna, Animashree Anandkumar:
StrassenNets: Deep Learning with a Multiplication Budget. ICML 2018: 4992-5001 - [c56]Kamyar Azizzadenesheli, Emma Brunskill, Animashree Anandkumar:
Efficient Exploration Through Bayesian Deep Q-Networks. ITA 2018: 1-9 - [i77]Forough Arabshahi, Sameer Singh, Animashree Anandkumar:
Combining Symbolic and Function Evaluation Expressions In Neural Programs. CoRR abs/1801.04342 (2018) - [i76]Kamyar Azizzadenesheli, Emma Brunskill, Animashree Anandkumar:
Efficient Exploration through Bayesian Deep Q-Networks. CoRR abs/1802.04412 (2018) - [i75]Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, Anima Anandkumar:
signSGD: compressed optimisation for non-convex problems. CoRR abs/1802.04434 (2018) - [i74]Peiyun Hu, Zachary C. Lipton, Anima Anandkumar, Deva Ramanan:
Active Learning with Partial Feedback. CoRR abs/1802.07427 (2018) - [i73]Guneet S. Dhillon, Kamyar Azizzadenesheli, Zachary C. Lipton, Jeremy Bernstein, Jean Kossaifi, Aran Khanna, Anima Anandkumar:
Stochastic Activation Pruning for Robust Adversarial Defense. CoRR abs/1803.01442 (2018) - [i72]Yang Shi, Tommaso Furlanello, Sheng Zha, Animashree Anandkumar:
Question Type Guided Attention in Visual Question Answering. CoRR abs/1804.02088 (2018) - [i71]Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti, Anima Anandkumar:
Born Again Neural Networks. CoRR abs/1805.04770 (2018) - [i70]Ben Athiwaratkun, Andrew Gordon Wilson, Anima Anandkumar:
Probabilistic FastText for Multi-Sense Word Embeddings. CoRR abs/1806.02901 (2018) - [i69]Kamyar Azizzadenesheli, Brandon Yang, Weitang Liu, Emma Brunskill, Zachary C. Lipton, Animashree Anandkumar:
Sample-Efficient Deep RL with Generative Adversarial Tree Search. CoRR abs/1806.05780 (2018) - [i68]Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, Anima Anandkumar:
signSGD with Majority Vote is Communication Efficient And Byzantine Fault Tolerant. CoRR abs/1810.05291 (2018) - [i67]Kamyar Azizzadenesheli, Manish Kumar Bera, Animashree Anandkumar:
Trust Region Policy Optimization of POMDPs. CoRR abs/1810.07900 (2018) - [i66]Milan Cvitkovic, Badal Singh, Anima Anandkumar:
Open Vocabulary Learning on Source Code with a Graph-Structured Cache. CoRR abs/1810.08305 (2018) - [i65]Nhat Ho, Tan M. Nguyen, Ankit B. Patel, Anima Anandkumar, Michael I. Jordan, Richard G. Baraniuk:
Neural Rendering Model: Joint Generation and Prediction for Semi-Supervised Learning. CoRR abs/1811.02657 (2018) - [i64]Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree Anandkumar, Yisong Yue, Soon-Jo Chung:
Neural Lander: Stable Drone Landing Control using Learned Dynamics. CoRR abs/1811.08027 (2018) - 2017
- [j26]Animashree Anandkumar, Rong Ge, Majid Janzamin:
Analyzing Tensor Power Method Dynamics in Overcomplete Regime. J. Mach. Learn. Res. 18: 22:1-22:40 (2017) - [j25]Alekh Agarwal
, Animashree Anandkumar, Praneeth Netrapalli:
A Clustering Approach to Learning Sparsely Used Overcomplete Dictionaries. IEEE Trans. Inf. Theory 63(1): 575-592 (2017) - [c55]Forough Arabshahi, Anima Anandkumar:
Spectral Methods for Correlated Topic Models. AISTATS 2017: 1439-1447 - [c54]Anima Anandkumar, Yuan Deng, Rong Ge, Hossein Mobahi:
Homotopy Analysis for Tensor PCA. COLT 2017: 79-104 - [c53]Jean Kossaifi
, Aran Khanna, Zachary Chase Lipton, Tommaso Furlanello, Anima Anandkumar:
Tensor Contraction Layers for Parsimonious Deep Nets. CVPR Workshops 2017: 1940-1946 - [c52]Yanyao Shen, Hyokun Yun, Zachary Chase Lipton, Yakov Kronrod, Animashree Anandkumar:
Deep Active Learning for Named Entity Recognition. Rep4NLP@ACL 2017: 252-256 - [i63]Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar:
Experimental results : Reinforcement Learning of POMDPs using Spectral Methods. CoRR abs/1705.02553 (2017) - [i62]Jean Kossaifi, Aran Khanna, Zachary C. Lipton, Tommaso Furlanello, Anima Anandkumar:
Tensor Contraction Layers for Parsimonious Deep Nets. CoRR abs/1706.00439 (2017) - [i61]Yang Shi, Tommaso Furlanello, Anima Anandkumar:
Compact Tensor Pooling for Visual Question Answering. CoRR abs/1706.06706 (2017) - [i60]Yanyao Shen, Hyokun Yun, Zachary C. Lipton, Yakov Kronrod, Animashree Anandkumar:
Deep Active Learning for Named Entity Recognition. CoRR abs/1707.05928 (2017) - [i59]Jean Kossaifi, Zachary C. Lipton, Aran Khanna, Tommaso Furlanello, Anima Anandkumar:
Tensor Regression Networks. CoRR abs/1707.08308 (2017) - [i58]Rose Yu, Stephan Zheng, Anima Anandkumar, Yisong Yue:
Long-term Forecasting using Tensor-Train RNNs. CoRR abs/1711.00073 (2017) - [i57]Michael Tschannen, Aran Khanna, Anima Anandkumar:
StrassenNets: Deep learning with a multiplication budget. CoRR abs/1712.03942 (2017) - [i56]Ashish Khetan, Zachary C. Lipton, Anima Anandkumar:
Learning From Noisy Singly-labeled Data. CoRR abs/1712.04577 (2017) - 2016
- [j24]Alekh Agarwal, Animashree Anandkumar, Prateek Jain, Praneeth Netrapalli:
Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization. SIAM J. Optim. 26(4): 2775-2799 (2016) - [c51]Anima Anandkumar, Prateek Jain, Yang Shi, U. N. Niranjan:
Tensor vs. Matrix Methods: Robust Tensor Decomposition under Block Sparse Perturbations. AISTATS 2016: 268-276 - [c50]Hanie Sedghi, Majid Janzamin, Anima Anandkumar:
Provable Tensor Methods for Learning Mixtures of Generalized Linear Models. AISTATS 2016: 1223-1231 - [c49]Animashree Anandkumar, Rong Ge:
Efficient approaches for escaping higher order saddle points in non-convex optimization. COLT 2016: 81-102 - [c48]Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar:
Reinforcement Learning of POMDPs using Spectral Methods. COLT 2016: 193-256 - [c47]Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar:
Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies. COLT 2016: 1639-1642 - [c46]Yang Shi, U. N. Niranjan, Animashree Anandkumar, Cris Cecka:
Tensor Contractions with Extended BLAS Kernels on CPU and GPU. HiPC 2016: 193-202 - [c45]Yining Wang, Anima Anandkumar:
Online and Differentially-Private Tensor Decomposition. NIPS 2016: 3531-3539 - [i55]Anima Anandkumar, Rong Ge:
Efficient approaches for escaping higher order saddle points in non-convex optimization. CoRR abs/1602.05908 (2016) - [i54]Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar:
Reinforcement Learning of POMDP's using Spectral Methods. CoRR abs/1602.07764 (2016) - [i53]Hanie Sedghi, Anima Anandkumar:
Training Input-Output Recurrent Neural Networks through Spectral Methods. CoRR abs/1603.00954 (2016) - [i52]Forough Arabshahi, Animashree Anandkumar:
Beyond LDA: A Unified Framework for Learning Latent Normalized Infinitely Divisible Topic Models through Spectral Methods. CoRR abs/1605.09080 (2016) - [i51]