default search action
Koby Crammer
Person information
- affiliation: Technion, Israel Institute of Technology, Israel
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [c87]Shuxiao Chen, Koby Crammer, Hangfeng He, Dan Roth, Weijie J. Su:
Weighted Training for Cross-Task Learning. ICLR 2022 - 2021
- [i22]Shuxiao Chen, Koby Crammer, Hangfeng He, Dan Roth, Weijie J. Su:
Weighted Training for Cross-Task Learning. CoRR abs/2105.14095 (2021)
2010 – 2019
- 2019
- [i21]Mark Kozdoba, Edward Moroshko, Shie Mannor, Koby Crammer:
Variance Estimation For Online Regression via Spectrum Thresholding. CoRR abs/1906.05591 (2019) - 2018
- [j23]Hadas Benisty, Itamar Katz, Koby Crammer, David Malah:
Discriminative Keyword Spotting for limited-data applications. Speech Commun. 99: 1-11 (2018) - [c86]Yuval Dagan, Koby Crammer:
A Better Resource Allocation Algorithm with Semi-Bandit Feedback. ALT 2018: 268-320 - [c85]Itay Evron, Edward Moroshko, Koby Crammer:
Efficient Loss-Based Decoding on Graphs for Extreme Classification. NeurIPS 2018: 7233-7244 - [i20]Itay Evron, Edward Moroshko, Koby Crammer:
Efficient Loss-Based Decoding On Graphs For Extreme Classification. CoRR abs/1803.03319 (2018) - [i19]Yuval Dagan, Koby Crammer:
A Better Resource Allocation Algorithm with Semi-Bandit Feedback. CoRR abs/1803.10415 (2018) - [i18]Mark Kozdoba, Edward Moroshko, Lior Shani, Takuya Takagi, Takashi Katoh, Shie Mannor, Koby Crammer:
Multi Instance Learning For Unbalanced Data. CoRR abs/1812.07010 (2018) - 2017
- [j22]Noam Segev, Maayan Harel, Shie Mannor, Koby Crammer, Ran El-Yaniv:
Learn on Source, Refine on Target: A Model Transfer Learning Framework with Random Forests. IEEE Trans. Pattern Anal. Mach. Intell. 39(9): 1811-1824 (2017) - [c84]Nir Levine, Koby Crammer, Shie Mannor:
Rotting Bandits. NIPS 2017: 3074-3083 - [c83]Edward Moroshko, Koby Crammer:
Online Regression with Controlled Label Noise Rate. ECML/PKDD (2) 2017: 355-369 - [i17]Nir Levine, Koby Crammer, Shie Mannor:
Rotting Bandits. CoRR abs/1702.07274 (2017) - 2016
- [j21]Hadas Benisty, David Malah, Koby Crammer:
Grid-based approximation for voice conversion in low resource environments. EURASIP J. Audio Speech Music. Process. 2016: 3 (2016) - [c82]Boaz Petersil, Avihai Mejer, Idan Szpektor, Koby Crammer:
That's Not My Question: Learning to Weight Unmatched Terms in CQA Vertical Search. SIGIR 2016: 225-234 - [i16]Yonatan Glassner, Koby Crammer:
Bandits meet Computer Architecture: Designing a Smartly-allocated Cache. CoRR abs/1602.00309 (2016) - 2015
- [j20]Edward Moroshko, Nina Vaits, Koby Crammer:
Second-order non-stationary online learning for regression. J. Mach. Learn. Res. 16: 1481-1517 (2015) - [j19]Francesco Orabona, Koby Crammer, Nicolò Cesa-Bianchi:
A generalized online mirror descent with applications to classification and regression. Mach. Learn. 99(3): 411-435 (2015) - [c81]Itamar Katz, Koby Crammer:
Outlier-Robust Convex Segmentation. AAAI 2015: 2701-2707 - [c80]Aviad Barzilai, Koby Crammer:
Convex Multi-Task Learning by Clustering. AISTATS 2015 - [c79]Yuval Cassuto, Koby Crammer:
In-memory hamming similarity computation in resistive arrays. ISIT 2015: 819-823 - [c78]Pedro A. Ortega, Koby Crammer, Daniel D. Lee:
Belief flows for robust online learning. ITA 2015: 70-77 - [c77]Tor Lattimore, Koby Crammer, Csaba Szepesvári:
Linear Multi-Resource Allocation with Semi-Bandit Feedback. NIPS 2015: 964-972 - [i15]Pedro A. Ortega, Koby Crammer, Daniel D. Lee:
Belief Flows of Robust Online Learning. CoRR abs/1505.07067 (2015) - [i14]Daniel Barsky, Koby Crammer:
CONQUER: Confusion Queried Online Bandit Learning. CoRR abs/1510.08974 (2015) - [i13]Noam Segev, Maayan Harel, Shie Mannor, Koby Crammer, Ran El-Yaniv:
Learn on Source, Refine on Target: A Model Transfer Learning Framework with Random Forests. CoRR abs/1511.01258 (2015) - 2014
- [j18]Edward Moroshko, Koby Crammer:
Weighted last-step min-max algorithm with improved sub-logarithmic regret. Theor. Comput. Sci. 558: 107-124 (2014) - [c76]Koby Crammer:
Doubly Aggressive Selective Sampling Algorithms for Classification. AISTATS 2014: 140-148 - [c75]Edward Moroshko, Koby Crammer:
Selective Sampling with Drift. AISTATS 2014: 651-659 - [c74]Asaf Noy, Koby Crammer:
Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. AISTATS 2014: 678-686 - [c73]Hadas Benisty, David Malah, Koby Crammer:
Non-parallel voice conversion using joint optimization of alignment by temporal context and spectral distortion. ICASSP 2014: 7909-7913 - [c72]Yevgeny Seldin, Peter L. Bartlett, Koby Crammer, Yasin Abbasi-Yadkori:
Prediction with Limited Advice and Multiarmed Bandits with Paid Observations. ICML 2014: 280-287 - [c71]Maayan Harel, Shie Mannor, Ran El-Yaniv, Koby Crammer:
Concept Drift Detection Through Resampling. ICML 2014: 1009-1017 - [c70]Haim Cohen, Koby Crammer:
Learning Multiple Tasks in Parallel with a Shared Annotator. NIPS 2014: 1170-1178 - [c69]Tor Lattimore, Koby Crammer, Csaba Szepesvári:
Optimal Resource Allocation with Semi-Bandit Feedback. UAI 2014: 477-486 - [i12]Edward Moroshko, Koby Crammer:
Selective Sampling with Drift. CoRR abs/1402.4084 (2014) - [i11]Tor Lattimore, Koby Crammer, Csaba Szepesvári:
Optimal Resource Allocation with Semi-Bandit Feedback. CoRR abs/1406.3840 (2014) - [i10]Itamar Katz, Koby Crammer:
Outlier-Robust Convex Segmentation. CoRR abs/1411.4503 (2014) - 2013
- [j17]Koby Crammer, Claudio Gentile:
Multiclass classification with bandit feedback using adaptive regularization. Mach. Learn. 90(3): 347-383 (2013) - [j16]Koby Crammer, Alex Kulesza, Mark Dredze:
Adaptive regularization of weight vectors. Mach. Learn. 91(2): 155-187 (2013) - [c68]Edward Moroshko, Koby Crammer:
A Last-Step Regression Algorithm for Non-Stationary Online Learning. AISTATS 2013: 451-462 - [c67]Yevgeny Seldin, Koby Crammer, Peter L. Bartlett:
Open Problem: Adversarial Multiarmed Bandits with Limited Advice. COLT 2013: 1067-1072 - [c66]Noam Slonim, Ehud Aharoni, Koby Crammer:
Hartigan's K-Means Versus Lloyd's K-Means - Is It Time for a Change? IJCAI 2013: 1677-1684 - [c65]Ben Zion Vatashsky, Koby Crammer:
Multi Class Learning with Individual Sparsity. IJCAI 2013: 1729-1735 - [i9]Edward Moroshko, Koby Crammer:
Weighted Last-Step Min-Max Algorithm with Improved Sub-Logarithmic Regret. CoRR abs/1301.6058 (2013) - [i8]Nina Vaits, Edward Moroshko, Koby Crammer:
Second-Order Non-Stationary Online Learning for Regression. CoRR abs/1303.0140 (2013) - [i7]Edward Moroshko, Koby Crammer:
A Last-Step Regression Algorithm for Non-Stationary Online Learning. CoRR abs/1303.3754 (2013) - [i6]Francesco Orabona, Koby Crammer, Nicolò Cesa-Bianchi:
A Generalized Online Mirror Descent with Applications to Classification and Regression. CoRR abs/1304.2994 (2013) - [i5]Yevgeny Seldin, Peter L. Bartlett, Koby Crammer:
Advice-Efficient Prediction with Expert Advice. CoRR abs/1304.3708 (2013) - 2012
- [j15]Axel Bernal, Koby Crammer, Fernando Pereira:
Automated gene-model curation using global discriminative learning. Bioinform. 28(12): 1571-1578 (2012) - [j14]Koby Crammer, Mark Dredze, Fernando Pereira:
Confidence-Weighted Linear Classification for Text Categorization. J. Mach. Learn. Res. 13: 1891-1926 (2012) - [j13]Zhuang Wang, Koby Crammer, Slobodan Vucetic:
Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training. J. Mach. Learn. Res. 13: 3103-3131 (2012) - [c64]Edward Moroshko, Koby Crammer:
Weighted Last-Step Min-Max Algorithm with Improved Sub-logarithmic Regret. ALT 2012: 245-259 - [c63]Paramveer S. Dhillon, Partha Pratim Talukdar, Koby Crammer:
Metric Learning for Graph-Based Domain Adaptation. COLING (Posters) 2012: 255-264 - [c62]Hadas Benisty, David Malah, Koby Crammer:
Modular Global Variance enhancement for voice conversion systems. EUSIPCO 2012: 370-374 - [c61]Koby Crammer, Daniel D. Lee:
Online discriminative learning of phoneme recognition via collections of generalized linear models. ICASSP 2012: 1961-1964 - [c60]Koby Crammer, Alex Kulesza, Mark Dredze:
New ℌ∞ bounds for the recursive least squares algorithm exploiting input structure. ICASSP 2012: 2017-2020 - [c59]Koby Crammer, Gal Chechik:
Adaptive Regularization for Similarity Measures. ICML 2012 - [c58]Avihai Mejer, Koby Crammer:
Training Dependency Parser Using Light Feedback. HLT-NAACL 2012: 488-497 - [c57]Avihai Mejer, Koby Crammer:
Are You Sure? Confidence in Prediction of Dependency Tree Edges. HLT-NAACL 2012: 573-576 - [c56]Koby Crammer, Tal Wagner:
Volume Regularization for Binary Classification. NIPS 2012: 341-349 - [c55]Koby Crammer, Yishay Mansour:
Learning Multiple Tasks using Shared Hypotheses. NIPS 2012: 1484-1492 - [c54]Matan Orbach, Koby Crammer:
Graph-Based Transduction with Confidence. ECML/PKDD (2) 2012: 323-338 - [c53]Yoav Haimovitch, Koby Crammer, Shie Mannor:
More Is Better: Large Scale Partially-supervised Sentiment Classication. ACML 2012: 175-190 - [c52]Roi Livni, Koby Crammer, Amir Globerson:
A Simple Geometric Interpretation of SVM using Stochastic Adversaries. AISTATS 2012: 722-730 - [i4]Koby Crammer, Gal Chechik:
Adaptive Regularization for Weight Matrices. CoRR abs/1206.4639 (2012) - [i3]Koby Crammer, Amir Globerson:
Discriminative Learning via Semidefinite Probabilistic Models. CoRR abs/1206.6815 (2012) - [i2]Yoav Haimovitch, Koby Crammer, Shie Mannor:
More Is Better: Large Scale Partially-supervised Sentiment Classification - Appendix. CoRR abs/1209.6329 (2012) - 2011
- [c51]Nina Vaits, Koby Crammer:
Re-adapting the Regularization of Weights for Non-stationary Regression. ALT 2011: 114-128 - [c50]Koby Crammer, Claudio Gentile:
Multiclass Classification with Bandit Feedback using Adaptive Regularization. ICML 2011: 273-280 - [c49]Noam Slonim, Elad Yom-Tov, Koby Crammer:
Active Online Classification via Information Maximization. IJCAI 2011: 1498-1504 - [c48]Zhuang Wang, Nemanja Djuric, Koby Crammer, Slobodan Vucetic:
Trading representability for scalability: adaptive multi-hyperplane machine for nonlinear classification. KDD 2011: 24-32 - [i1]Avihai Mejer, Koby Crammer:
Confidence Estimation in Structured Prediction. CoRR abs/1111.1386 (2011) - 2010
- [j12]Mark Dredze, Alex Kulesza, Koby Crammer:
Multi-domain learning by confidence-weighted parameter combination. Mach. Learn. 79(1-2): 123-149 (2010) - [j11]Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, Jennifer Wortman Vaughan:
A theory of learning from different domains. Mach. Learn. 79(1-2): 151-175 (2010) - [c47]Paramveer S. Dhillon, Partha Pratim Talukdar, Koby Crammer:
Learning Better Data Representation Using Inference-Driven Metric Learning. ACL (2) 2010: 377-381 - [c46]Koby Crammer, Yishay Mansour, Eyal Even-Dar, Jennifer Wortman Vaughan:
Regret Minimization With Concept Drift. COLT 2010: 168-180 - [c45]Avihai Mejer, Koby Crammer:
Confidence in Structured-Prediction Using Confidence-Weighted Models. EMNLP 2010: 971-981 - [c44]Koby Crammer:
Efficient online learning with individual learning-rates for phoneme sequence recognition. ICASSP 2010: 4878-4881 - [c43]Zhuang Wang, Koby Crammer, Slobodan Vucetic:
Multi-Class Pegasos on a Budget. ICML 2010: 1143-1150 - [c42]Koby Crammer, Daniel D. Lee:
Learning via Gaussian Herding. NIPS 2010: 451-459 - [c41]Francesco Orabona, Koby Crammer:
New Adaptive Algorithms for Online Classification. NIPS 2010: 1840-1848 - [c40]Justin Ma, Alex Kulesza, Mark Dredze, Koby Crammer, Lawrence K. Saul, Fernando Pereira:
Exploiting Feature Covariance in High-Dimensional Online Learning. AISTATS 2010: 493-500
2000 – 2009
- 2009
- [c39]Koby Crammer, Mark Dredze, Alex Kulesza:
Multi-Class Confidence Weighted Algorithms. EMNLP 2009: 496-504 - [c38]Ted Sandler, Lyle H. Ungar, Koby Crammer:
Resolving Identity Uncertainty with Learned Random Walks. ICDM 2009: 457-465 - [c37]Hui Lin, Jeff A. Bilmes, Koby Crammer:
How to loose confidence: probabilistic linear machines for multiclass classification. INTERSPEECH 2009: 2559-2562 - [c36]Kedar Bellare, Koby Crammer, Dayne Freitag:
Loss-Sensitive Discriminative Training of Machine Transliteration Models. HLT-NAACL (Student Research Workshop and Doctoral Consortium) 2009: 61-65 - [c35]Koby Crammer, Alex Kulesza, Mark Dredze:
Adaptive Regularization of Weight Vectors. NIPS 2009: 414-422 - [c34]Partha Pratim Talukdar, Koby Crammer:
New Regularized Algorithms for Transductive Learning. ECML/PKDD (2) 2009: 442-457 - [c33]Koby Crammer, Mehryar Mohri, Fernando Pereira:
Gaussian Margin Machines. AISTATS 2009: 105-112 - 2008
- [j10]Qian Liu, Koby Crammer, Fernando C. N. Pereira, David S. Roos:
Reranking candidate gene models with cross-species comparison for improved gene prediction. BMC Bioinform. 9 (2008) - [j9]Koby Crammer, Michael J. Kearns, Jennifer Wortman:
Learning from Multiple Sources. J. Mach. Learn. Res. 9: 1757-1774 (2008) - [j8]Partha Pratim Talukdar, Marie Jacob, Muhammad Salman Mehmood, Koby Crammer, Zachary G. Ives, Fernando C. N. Pereira, Sudipto Guha:
Learning to create data-integrating queries. Proc. VLDB Endow. 1(1): 785-796 (2008) - [c32]Koby Crammer:
Advanced Online Learning for Natural Language Processing. ACL (Tutorial Abstracts) 2008: 4 - [c31]Mark Dredze, Koby Crammer:
Active Learning with Confidence. ACL (2) 2008: 233-236 - [c30]Ron Bekkerman, Koby Crammer:
One-Class Clustering in the Text Domain. EMNLP 2008: 41-50 - [c29]Mark Dredze, Koby Crammer:
Online Methods for Multi-Domain Learning and Adaptation. EMNLP 2008: 689-697 - [c28]Koby Crammer, Partha Pratim Talukdar, Fernando C. N. Pereira:
A rate-distortion one-class model and its applications to clustering. ICML 2008: 184-191 - [c27]Mark Dredze, Koby Crammer, Fernando Pereira:
Confidence-weighted linear classification. ICML 2008: 264-271 - [c26]Koby Crammer, Mark Dredze, Fernando Pereira:
Exact Convex Confidence-Weighted Learning. NIPS 2008: 345-352 - 2007
- [j7]Axel Bernal, Koby Crammer, Artemis G. Hatzigeorgiou, Fernando Pereira:
Global Discriminative Learning for Higher-Accuracy Computational Gene Prediction. PLoS Comput. Biol. 3(3) (2007) - [c25]Koby Crammer, Mark Dredze, Kuzman Ganchev, Partha Pratim Talukdar, Steven Carroll:
Automatic Code Assignment to Medical Text. BioNLP@ACL 2007: 129-136 - [c24]Koby Crammer:
A conservative aggressive subspace tracker. INTERSPEECH 2007: 498-501 - [c23]John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, Jennifer Wortman:
Learning Bounds for Domain Adaptation. NIPS 2007: 129-136 - 2006
- [j6]Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer:
Online Passive-Aggressive Algorithms. J. Mach. Learn. Res. 7: 551-585 (2006) - [c22]Linli Xu, Koby Crammer, Dale Schuurmans:
Robust Support Vector Machine Training via Convex Outlier Ablation. AAAI 2006: 536-542 - [c21]Koby Crammer:
Online Tracking of Linear Subspaces. COLT 2006: 438-452 - [c20]Koby Crammer, Daniel D. Lee:
Room Impulse Response Estimation using Sparse Online Prediction and Absolute Loss. ICASSP (3) 2006: 748-751 - [c19]Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira:
Analysis of Representations for Domain Adaptation. NIPS 2006: 137-144 - [c18]Koby Crammer, Michael J. Kearns, Jennifer Wortman:
Learning from Multiple Sources. NIPS 2006: 321-328 - [c17]Koby Crammer, Amir Globerson:
Discriminative Learning via Semidefinite Probabilistic Models. UAI 2006 - 2005
- [j5]Koby Crammer, Yoram Singer:
Online Ranking by Projecting. Neural Comput. 17(1): 145-175 (2005) - [c16]Ryan T. McDonald, Koby Crammer, Fernando C. N. Pereira:
Online Large-Margin Training of Dependency Parsers. ACL 2005: 91-98 - [c15]Koby Crammer, Yoram Singer:
Loss Bounds for Online Category Ranking. COLT 2005: 48-62 - [c14]Ryan T. McDonald, Koby Crammer, Fernando Pereira:
Flexible Text Segmentation with Structured Multilabel Classification. HLT/EMNLP 2005: 987-994 - [c13]Koby Crammer, Michael J. Kearns, Jennifer Wortman:
Learning from Data of Variable Quality. NIPS 2005: 219-226 - 2004
- [b1]Koby Crammer:
Online learning of complex categorical problems (למידה מקוונת של בעיות דירוג מורכבות.). Hebrew University of Jerusalem, Israel, 2004 - [c12]Koby Crammer, Gal Chechik:
A needle in a haystack: local one-class optimization. ICML 2004 - [c11]Lavi Shpigelman, Koby Crammer, Rony Paz, Eilon Vaadia, Yoram Singer:
A Temporal Kernel-Based Model for Tracking Hand Movements from Neural Activities. NIPS 2004: 1273-1280 - 2003
- [j4]Koby Crammer, Yoram Singer:
Ultraconservative Online Algorithms for Multiclass Problems. J. Mach. Learn. Res. 3: 951-991 (2003) - [j3]Koby Crammer, Yoram Singer:
A Family of Additive Online Algorithms for Category Ranking. J. Mach. Learn. Res. 3: 1025-1058 (2003) - [c10]Koby Crammer, Yoram Singer:
Learning Algorithm for Enclosing Points in Bregmanian Spheres. COLT 2003: 388-402 - [c9]Koby Crammer, Jaz S. Kandola, Yoram Singer:
Online Classification on a Budget. NIPS 2003: 225-232 - [c8]Shai Shalev-Shwartz, Koby Crammer, Ofer Dekel, Yoram Singer:
Online Passive-Aggressive Algorithms. NIPS 2003: 1229-1236 - 2002
- [j2]Koby Crammer, Yoram Singer:
On the Learnability and Design of Output Codes for Multiclass Problems. Mach. Learn. 47(2-3): 201-233 (2002) - [c7]Koby Crammer, Ran Gilad-Bachrach, Amir Navot, Naftali Tishby:
Margin Analysis of the LVQ Algorithm. NIPS 2002: 462-469 - [c6]Koby Crammer, Joseph Keshet, Yoram Singer:
Kernel Design Using Boosting. NIPS 2002: 537-544 - [c5]Koby Crammer, Yoram Singer:
A new family of online algorithms for category ranking. SIGIR 2002: 151-158 - 2001
- [j1]Koby Crammer, Yoram Singer:
On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. J. Mach. Learn. Res. 2: 265-292 (2001) - [c4]Koby Crammer, Yoram Singer:
Ultraconservative Online Algorithms for Multiclass Problems. COLT/EuroCOLT 2001: 99-115 - [c3]