


default search action
Yishay Mansour
Person information
- affiliation: Tel Aviv University, School of Computer Science, Israel
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2025
- [c306]Edith Cohen, Haim Kaplan, Yishay Mansour, Shay Moran, Kobbi Nissim, Uri Stemmer, Eliad Tsfadia:
Data Reconstruction: When You See It and When You Don't. ITCS 2025: 39:1-39:23 - 2024
- [j114]Noa Ecker, Dorothée Huchon, Yishay Mansour, Itay Mayrose, Tal Pupko:
A machine-learning-based alternative to phylogenetic bootstrap. Bioinform. 40(Supplement_1): i208-i217 (2024) - [c305]Omer Ben-Porat, Yishay Mansour, Michal Moshkovitz, Boaz Taitler:
Principal-Agent Reward Shaping in MDPs. AAAI 2024: 9502-9510 - [c304]Aadirupa Saha, Vitaly Feldman, Yishay Mansour, Tomer Koren:
Faster Convergence with MultiWay Preferences. AISTATS 2024: 433-441 - [c303]Nave Frost, Zachary C. Lipton, Yishay Mansour, Michal Moshkovitz:
Partially Interpretable Models with Guarantees on Coverage and Accuracy. ALT 2024: 590-613 - [c302]Marco Bressan, Nicolò Cesa-Bianchi, Emmanuel Esposito, Yishay Mansour, Shay Moran, Maximilian Thiessen:
A Theory of Interpretable Approximations. COLT 2024: 648-668 - [c301]Lee Cohen, Yishay Mansour, Shay Moran, Han Shao:
Learnability Gaps of Strategic Classification. COLT 2024: 1223-1259 - [c300]Liad Erez, Alon Cohen, Tomer Koren, Yishay Mansour, Shay Moran:
The Real Price of Bandit Information in Multiclass Classification. COLT 2024: 1573-1598 - [c299]Orin Levy, Asaf B. Cassel, Alon Cohen, Yishay Mansour:
Eluder-based Regret for Stochastic Contextual MDPs. ICML 2024 - [c298]Uri Sherman, Alon Cohen, Tomer Koren, Yishay Mansour:
Rate-Optimal Policy Optimization for Linear Markov Decision Processes. ICML 2024 - [c297]Pranjal Awasthi, Corinna Cortes, Yishay Mansour, Mehryar Mohri:
A Theory of Learning with Competing Objectives and User Feedback. ISAIM 2024: 10-49 - [c296]Marek Eliás, Haim Kaplan, Yishay Mansour, Shay Moran:
Learning-Augmented Algorithms with Explicit Predictors. NeurIPS 2024 - [c295]Liad Erez, Alon Peled-Cohen, Tomer Koren, Yishay Mansour, Shay Moran:
Fast Rates for Bandit PAC Multiclass Classification. NeurIPS 2024 - [c294]Richard Nock, Yishay Mansour:
How to Boost Any Loss Function. NeurIPS 2024 - [i156]Omer Ben-Porat, Yishay Mansour, Michal Moshkovitz, Boaz Taitler:
Principal-Agent Reward Shaping in MDPs. CoRR abs/2401.00298 (2024) - [i155]Lee Cohen, Yishay Mansour, Shay Moran, Han Shao:
Learnability Gaps of Strategic Classification. CoRR abs/2402.19303 (2024) - [i154]Marek Eliás, Haim Kaplan, Yishay Mansour, Shay Moran:
Learning-Augmented Algorithms with Explicit Predictors. CoRR abs/2403.07413 (2024) - [i153]Liad Erez, Alon Cohen, Tomer Koren, Yishay Mansour, Shay Moran:
The Real Price of Bandit Information in Multiclass Classification. CoRR abs/2405.10027 (2024) - [i152]Edith Cohen, Haim Kaplan, Yishay Mansour, Shay Moran, Kobbi Nissim, Uri Stemmer, Eliad Tsfadia:
Data Reconstruction: When You See It and When You Don't. CoRR abs/2405.15753 (2024) - [i151]Yogev Bar-On, Yishay Mansour:
Non-stochastic Bandits With Evolving Observations. CoRR abs/2405.16843 (2024) - [i150]Christoph Dann, Yishay Mansour, Mehryar Mohri, Jon Schneider, Balasubramanian Sivan:
Rate-Preserving Reductions for Blackwell Approachability. CoRR abs/2406.07585 (2024) - [i149]Marco Bressan, Nicolò Cesa-Bianchi, Emmanuel Esposito, Yishay Mansour, Shay Moran, Maximilian Thiessen
:
A Theory of Interpretable Approximations. CoRR abs/2406.10529 (2024) - [i148]Liad Erez, Alon Cohen, Tomer Koren, Yishay Mansour, Shay Moran:
Fast Rates for Bandit PAC Multiclass Classification. CoRR abs/2406.12406 (2024) - [i147]Richard Nock, Yishay Mansour:
How to Boost Any Loss Function. CoRR abs/2407.02279 (2024) - [i146]Ofir Schlisselberg, Ido Cohen, Tal Lancewicki, Yishay Mansour:
Delay as Payoff in MAB. CoRR abs/2408.15158 (2024) - [i145]Asaf B. Cassel, Orin Levy, Yishay Mansour:
Batch Ensemble for Variance Dependent Regret in Stochastic Bandits. CoRR abs/2409.08570 (2024) - [i144]Haim Kaplan, Yishay Mansour, Shay Moran, Uri Stemmer, Nitzan Tur:
On Differentially Private Linear Algebra. CoRR abs/2411.03087 (2024) - [i143]Giannis Fikioris, Robert Kleinberg, Yoav Kolumbus, Raunak Kumar, Yishay Mansour, Éva Tardos:
Learning in Budgeted Auctions with Spacing Objectives. CoRR abs/2411.04843 (2024) - [i142]Idan Barnea, Tal Lancewicki, Yishay Mansour:
Individual Regret in Cooperative Stochastic Multi-Armed Bandits. CoRR abs/2411.06501 (2024) - [i141]Lee Cohen, Yishay Mansour, Shay Moran, Han Shao:
Probably Approximately Precision and Recall Learning. CoRR abs/2411.13029 (2024) - [i140]Marco Bressan, Nataly Brukhim, Nicolò Cesa-Bianchi, Emmanuel Esposito, Yishay Mansour, Shay Moran, Maximilian Thiessen:
Of Dice and Games: A Theory of Generalized Boosting. CoRR abs/2412.08012 (2024) - 2023
- [c293]Orin Levy, Yishay Mansour:
Optimism in Face of a Context: Regret Guarantees for Stochastic Contextual MDP. AAAI 2023: 8510-8517 - [c292]Eitan-Hai Mashiah, Idan Attias, Yishay Mansour:
Learning Revenue Maximization Using Posted Prices for Stochastic Strategic Patient Buyers. AAAI 2023: 9090-9098 - [c291]Christoph Dann, Yishay Mansour, Mehryar Mohri, Jon Schneider, Balasubramanian Sivan:
Pseudonorm Approachability and Applications to Regret Minimization. ALT 2023: 471-509 - [c290]Yogev Bar-On, Yishay Mansour:
Uniswap Liquidity Provision: An Online Learning Approach. FC Workshops 2023: 247-261 - [c289]Christoph Dann, Yishay Mansour, Mehryar Mohri:
Reinforcement Learning Can Be More Efficient with Multiple Rewards. ICML 2023: 6948-6967 - [c288]Liad Erez, Tal Lancewicki, Uri Sherman, Tomer Koren, Yishay Mansour:
Regret Minimization and Convergence to Equilibria in General-sum Markov Games. ICML 2023: 9343-9373 - [c287]Orin Levy, Alon Cohen, Asaf B. Cassel, Yishay Mansour:
Efficient Rate Optimal Regret for Adversarial Contextual MDPs Using Online Function Approximation. ICML 2023: 19287-19314 - [c286]Yishay Mansour, Richard Nock, Robert C. Williamson:
Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice. ICML 2023: 23706-23742 - [c285]Uri Sherman, Tomer Koren, Yishay Mansour:
Improved Regret for Efficient Online Reinforcement Learning with Linear Function Approximation. ICML 2023: 31117-31150 - [c284]Jay Tenenbaum, Haim Kaplan, Yishay Mansour, Uri Stemmer:
Concurrent Shuffle Differential Privacy Under Continual Observation. ICML 2023: 33961-33982 - [c283]Lee Cohen, Yishay Mansour, Michal Moshkovitz:
Finding Safe Zones of Markov Decision Processes Policies. NeurIPS 2023 - [c282]Nataly Brukhim, Amit Daniely, Yishay Mansour, Shay Moran:
Multiclass Boosting: Simple and Intuitive Weak Learning Criteria. NeurIPS 2023 - [c281]Haim Kaplan, Yishay Mansour, Shay Moran, Kobbi Nissim, Uri Stemmer:
Black-Box Differential Privacy for Interactive ML. NeurIPS 2023 - [c280]Han Shao, Lee Cohen, Avrim Blum, Yishay Mansour, Aadirupa Saha, Matthew R. Walter:
Eliciting User Preferences for Personalized Multi-Objective Decision Making through Comparative Feedback. NeurIPS 2023 - [i139]Jay Tenenbaum, Haim Kaplan, Yishay Mansour, Uri Stemmer:
Concurrent Shuffle Differential Privacy Under Continual Observation. CoRR abs/2301.12535 (2023) - [i138]Uri Sherman, Tomer Koren, Yishay Mansour:
Improved Regret for Efficient Online Reinforcement Learning with Linear Function Approximation. CoRR abs/2301.13087 (2023) - [i137]Yogev Bar-On, Yishay Mansour:
Uniswap Liquidity Provision: An Online Learning Approach. CoRR abs/2302.00610 (2023) - [i136]Christoph Dann, Yishay Mansour, Mehryar Mohri, Jon Schneider, Balasubramanian Sivan:
Pseudonorm Approachability and Applications to Regret Minimization. CoRR abs/2302.01517 (2023) - [i135]Han Shao, Lee Cohen, Avrim Blum, Yishay Mansour, Aadirupa Saha, Matthew R. Walter:
Eliciting User Preferences for Personalized Multi-Objective Decision Making through Comparative Feedback. CoRR abs/2302.03805 (2023) - [i134]Haim Kaplan, Yishay Mansour, Shay Moran, Kobbi Nissim, Uri Stemmer:
On Differentially Private Online Predictions. CoRR abs/2302.14099 (2023) - [i133]Orin Levy, Alon Cohen, Asaf B. Cassel, Yishay Mansour:
Efficient Rate Optimal Regret for Adversarial Contextual MDPs Using Online Function Approximation. CoRR abs/2303.01464 (2023) - [i132]Dana Azouri, Oz Granit, Michael Alburquerque, Yishay Mansour, Tal Pupko, Itay Mayrose:
The tree reconstruction game: phylogenetic reconstruction using reinforcement learning. CoRR abs/2303.06695 (2023) - [i131]Nataly Brukhim, Amit Daniely, Yishay Mansour, Shay Moran:
Multiclass Boosting: Simple and Intuitive Weak Learning Criteria. CoRR abs/2307.00642 (2023) - [i130]Uri Sherman, Alon Cohen, Tomer Koren, Yishay Mansour:
Rate-Optimal Policy Optimization for Linear Markov Decision Processes. CoRR abs/2308.14642 (2023) - [i129]Yogev Bar-On, Yishay Mansour:
Optimal Publishing Strategies on a Base Layer. CoRR abs/2312.06448 (2023) - [i128]Aadirupa Saha, Vitaly Feldman, Tomer Koren, Yishay Mansour:
Faster Convergence with Multiway Preferences. CoRR abs/2312.11788 (2023) - 2022
- [j113]Shant Boodaghians, Federico Fusco
, Stefano Leonardi, Yishay Mansour, Ruta Mehta:
Online revenue maximization for server pricing. Auton. Agents Multi Agent Syst. 36(1): 11 (2022) - [j112]Noa Ecker, Dana Azouri, Ben Bettisworth, Alexandros Stamatakis, Yishay Mansour, Itay Mayrose, Tal Pupko:
A LASSO-based approach to sample sites for phylogenetic tree search. Bioinform. 38(Supplement_1): i118-i124 (2022) - [j111]Yishay Mansour, Alex Slivkins
, Vasilis Syrgkanis, Zhiwei Steven Wu
:
Bayesian Exploration: Incentivizing Exploration in Bayesian Games. Oper. Res. 70(2): 1105-1127 (2022) - [j110]Avinatan Hassidim
, Haim Kaplan
, Yishay Mansour
, Yossi Matias
, Uri Stemmer
:
Adversarially Robust Streaming Algorithms via Differential Privacy. J. ACM 69(6): 42:1-42:14 (2022) - [j109]Idan Attias, Aryeh Kontorovich, Yishay Mansour:
Improved Generalization Bounds for Adversarially Robust Learning. J. Mach. Learn. Res. 23: 175:1-175:31 (2022) - [j108]Nicolò Cesa-Bianchi, Tommaso Cesari, Roberto Colomboni
, Claudio Gentile, Yishay Mansour:
Nonstochastic Bandits with Composite Anonymous Feedback. J. Mach. Learn. Res. 23: 277:1-277:24 (2022) - [j107]Haim Kaplan
, Yishay Mansour, Yossi Matias, Uri Stemmer:
Differentially Private Learning of Geometric Concepts. SIAM J. Comput. 51(4): 952-974 (2022) - [c279]Omer Ben-Porat, Lee Cohen, Liu Leqi, Zachary C. Lipton, Yishay Mansour:
Modeling Attrition in Recommender Systems with Departing Bandits. AAAI 2022: 6072-6079 - [c278]Tal Lancewicki, Aviv Rosenberg, Yishay Mansour:
Learning Adversarial Markov Decision Processes with Delayed Feedback. AAAI 2022: 7281-7289 - [c277]Olivier Bousquet, Amit Daniely, Haim Kaplan, Yishay Mansour, Shay Moran, Uri Stemmer:
Monotone Learning. COLT 2022: 842-866 - [c276]Yishay Mansour, Mehryar Mohri, Jon Schneider, Balasubramanian Sivan:
Strategizing against Learners in Bayesian Games. COLT 2022: 5221-5252 - [c275]Christoph Dann, Yishay Mansour, Mehryar Mohri, Ayush Sekhari, Karthik Sridharan:
Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation. ICML 2022: 4666-4689 - [c274]Tal Lancewicki, Aviv Rosenberg, Yishay Mansour:
Cooperative Online Learning in Stochastic and Adversarial MDPs. ICML 2022: 11918-11968 - [c273]Eliad Tsfadia, Edith Cohen, Haim Kaplan, Yishay Mansour, Uri Stemmer:
FriendlyCore: Practical Differentially Private Aggregation. ICML 2022: 21828-21863 - [c272]Idan Attias, Steve Hanneke, Yishay Mansour:
A Characterization of Semi-Supervised Adversarially Robust PAC Learnability. NeurIPS 2022 - [c271]Tiancheng Jin, Tal Lancewicki, Haipeng Luo, Yishay Mansour, Aviv Rosenberg:
Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback. NeurIPS 2022 - [c270]Tomer Koren, Roi Livni, Yishay Mansour, Uri Sherman:
Benign Underfitting of Stochastic Gradient Descent. NeurIPS 2022 - [c269]Alexander Soen, Ibrahim M. Alabdulmohsin, Sanmi Koyejo, Yishay Mansour, Nyalleng Moorosi, Richard Nock, Ke Sun, Lexing Xie:
Fair Wrapping for Black-box Predictions. NeurIPS 2022 - [c268]Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak
, Uri Stemmer:
Dynamic algorithms against an adaptive adversary: generic constructions and lower bounds. STOC 2022: 1671-1684 - [i127]Alexander Soen, Ibrahim Alabdulmohsin, Sanmi Koyejo, Yishay Mansour, Nyalleng Moorosi, Richard Nock, Ke Sun, Lexing Xie:
Fair Wrapping for Black-box Predictions. CoRR abs/2201.12947 (2022) - [i126]Tal Lancewicki, Aviv Rosenberg, Yishay Mansour:
Cooperative Online Learning in Stochastic and Adversarial MDPs. CoRR abs/2201.13170 (2022) - [i125]Tiancheng Jin, Tal Lancewicki, Haipeng Luo, Yishay Mansour, Aviv Rosenberg:
Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback. CoRR abs/2201.13172 (2022) - [i124]Olivier Bousquet, Amit Daniely, Haim Kaplan, Yishay Mansour, Shay Moran, Uri Stemmer:
Monotone Learning. CoRR abs/2202.05246 (2022) - [i123]Idan Attias, Steve Hanneke, Yishay Mansour:
A Characterization of Semi-Supervised Adversarially-Robust PAC Learnability. CoRR abs/2202.05420 (2022) - [i122]Eitan-Hai Mashiah, Idan Attias, Yishay Mansour:
Stochastic Strategic Patient Buyers: Revenue maximization using posted prices. CoRR abs/2202.06143 (2022) - [i121]Lee Cohen, Yishay Mansour, Michal Moshkovitz:
Finding Safe Zones of policies Markov Decision Processes. CoRR abs/2202.11593 (2022) - [i120]Tomer Koren, Roi Livni, Yishay Mansour, Uri Sherman:
Benign Underfitting of Stochastic Gradient Descent. CoRR abs/2202.13361 (2022) - [i119]Orin Levy, Yishay Mansour:
Learning Efficiently Function Approximation for Contextual MDP. CoRR abs/2203.00995 (2022) - [i118]Omer Ben-Porat, Lee Cohen, Liu Leqi, Zachary C. Lipton, Yishay Mansour:
Modeling Attrition in Recommender Systems with Departing Bandits. CoRR abs/2203.13423 (2022) - [i117]Yishay Mansour, Mehryar Mohri, Jon Schneider, Balasubramanian Sivan:
Strategizing against Learners in Bayesian Games. CoRR abs/2205.08562 (2022) - [i116]Yishay Mansour, Richard Nock, Robert C. Williamson:
What killed the Convex Booster ? CoRR abs/2205.09628 (2022) - [i115]Yishay Mansour, Michal Moshkovitz, Cynthia Rudin:
There is no Accuracy-Interpretability Tradeoff in Reinforcement Learning for Mazes. CoRR abs/2206.04266 (2022) - [i114]Christoph Dann, Yishay Mansour, Mehryar Mohri, Ayush Sekhari, Karthik Sridharan:
Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation. CoRR abs/2206.09421 (2022) - [i113]Orin Levy, Yishay Mansour:
Optimism in Face of a Context: Regret Guarantees for Stochastic Contextual MDP. CoRR abs/2207.11126 (2022) - [i112]Liad Erez, Tal Lancewicki, Uri Sherman, Tomer Koren, Yishay Mansour:
Regret Minimization and Convergence to Equilibria in General-sum Markov Games. CoRR abs/2207.14211 (2022) - [i111]Aadirupa Saha, Tomer Koren, Yishay Mansour:
Dueling Convex Optimization with General Preferences. CoRR abs/2210.02562 (2022) - [i110]Orin Levy, Asaf B. Cassel, Alon Cohen, Yishay Mansour:
Counterfactual Optimism: Rate Optimal Regret for Stochastic Contextual MDPs. CoRR abs/2211.14932 (2022) - [i109]Olivier Bousquet, Haim Kaplan, Aryeh Kontorovich, Yishay Mansour, Shay Moran, Menachem Sadigurschi, Uri Stemmer:
Differentially-Private Bayes Consistency. CoRR abs/2212.04216 (2022) - 2021
- [c267]Yishay Mansour, Mehryar Mohri, Jae Ro, Ananda Theertha Suresh, Ke Wu:
A Theory of Multiple-Source Adaptation with Limited Target Labeled Data. AISTATS 2021: 2332-2340 - [c266]Alon Cohen, Haim Kaplan, Tomer Koren, Yishay Mansour:
Online Markov Decision Processes with Aggregate Bandit Feedback. COLT 2021: 1301-1329 - [c265]Haim Kaplan, Yishay Mansour, Uri Stemmer:
The Sparse Vector Technique, Revisited. COLT 2021: 2747-2776 - [c264]Haim Kaplan, Yishay Mansour, Kobbi Nissim, Uri Stemmer:
Separating Adaptive Streaming from Oblivious Streaming Using the Bounded Storage Model. CRYPTO (3) 2021: 94-121 - [c263]Edith Cohen, Haim Kaplan, Yishay Mansour, Uri Stemmer, Eliad Tsfadia:
Differentially-Private Clustering of Easy Instances. ICML 2021: 2049-2059 - [c262]Tal Lancewicki, Shahar Segal, Tomer Koren, Yishay Mansour:
Stochastic Multi-Armed Bandits with Unrestricted Delay Distributions. ICML 2021: 5969-5978 - [c261]Aadirupa Saha, Tomer Koren, Yishay Mansour:
Adversarial Dueling Bandits. ICML 2021: 9235-9244 - [c260]Aadirupa Saha, Tomer Koren, Yishay Mansour:
Dueling Convex Optimization. ICML 2021: 9245-9254 - [c259]Aviv Rosenberg, Yishay Mansour:
Stochastic Shortest Path with Adversarially Changing Costs. IJCAI 2021: 2936-2942 - [c258]Uri Sherman, Tomer Koren, Yishay Mansour:
Optimal Rates for Random Order Online Optimization. NeurIPS 2021: 2097-2108 - [c257]Nicolò Cesa-Bianchi, Tommaso Cesari, Yishay Mansour, Vianney Perchet:
A New Theoretical Framework for Fast and Accurate Online Decision-Making. NeurIPS 2021: 9152-9166 - [c256]Aviv Rosenberg, Yishay Mansour:
Oracle-Efficient Regret Minimization in Factored MDPs with Unknown Structure. NeurIPS 2021: 11148-11159 - [c255]Ayush Sekhari, Christoph Dann, Mehryar Mohri, Yishay Mansour, Karthik Sridharan:
Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations. NeurIPS 2021: 19033-19045 - [c254]Lee Cohen, Ulrike Schmidt-Kraepelin, Yishay Mansour:
Dueling Bandits with Team Comparisons. NeurIPS 2021: 20633-20644 - [c253]Jay Tenenbaum, Haim Kaplan, Yishay Mansour, Uri Stemmer:
Differentially Private Multi-Armed Bandits in the Shuffle Model. NeurIPS 2021: 24956-24967 - [c252]Alon Cohen, Yonathan Efroni, Yishay Mansour, Aviv Rosenberg:
Minimax Regret for Stochastic Shortest Path. NeurIPS 2021: 28350-28361 - [i108]Haim Kaplan, Yishay Mansour, Kobbi Nissim, Uri Stemmer:
Separating Adaptive Streaming from Oblivious Streaming. CoRR abs/2101.10836 (2021) - [i107]Alon Cohen, Haim Kaplan, Tomer Koren, Yishay Mansour:
Online Markov Decision Processes with Aggregate Bandit Feedback. CoRR abs/2102.00490 (2021) - [i106]Nir Andelman, Michal Feldman, Amos Fiat, Yishay Mansour:
Competitive Equilibria with Unequal Budgets: Supporting Arbitrary Pareto Optimal Allocations. CoRR abs/2103.08634 (2021) - [i105]Alon Cohen, Yonathan Efroni, Yishay Mansour, Aviv Rosenberg:
Minimax Regret for Stochastic Shortest Path. CoRR abs/2103.13056 (2021) - [i104]Tal Lancewicki, Shahar Segal, Tomer Koren, Yishay Mansour:
Stochastic Multi-Armed Bandits with Unrestricted Delay Distributions. CoRR abs/2106.02436 (2021) - [i103]Jay Tenenbaum, Haim Kaplan, Yishay Mansour, Uri Stemmer:
Differentially Private Multi-Armed Bandits in the Shuffle Model. CoRR abs/2106.02900 (2021) - [i102]Christoph Dann, Yishay Mansour, Mehryar Mohri, Ayush Sekhari, Karthik Sridharan:
Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations. CoRR abs/2106.11519 (2021) - [i101]Uri Sherman, Tomer Koren, Yishay Mansour:
Optimal Rates for Random Order Online Optimization. CoRR abs/2106.15207 (2021) - [i100]Lee Cohen, Ulrike Schmidt-Kraepelin, Yishay Mansour:
Dueling Bandits with Team Comparisons. CoRR abs/2107.02738 (2021) - [i99]Eliad Tsfadia, Edith Cohen, Haim Kaplan, Yishay Mansour, Uri Stemmer:
FriendlyCore: Practical Differentially Private Aggregation. CoRR abs/2110.10132 (2021) - [i98]Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak
, Uri Stemmer:
Dynamic Algorithms Against an Adaptive Adversary: Generic Constructions and Lower Bounds. CoRR abs/2111.03980 (2021) - [i97]Nicolò Cesa-Bianchi, Tommaso Cesari, Roberto Colomboni, Claudio Gentile, Yishay Mansour:
Nonstochastic Bandits with Composite Anonymous Feedback. CoRR abs/2112.02866 (2021) - [i96]Edith Cohen, Haim Kaplan, Yishay Mansour, Uri Stemmer, Eliad Tsfadia:
Differentially-Private Clustering of Easy Instances. CoRR abs/2112.14445 (2021) - 2020
- [j106]Yishay Mansour
, Aleksandrs Slivkins
, Vasilis Syrgkanis
:
Bayesian Incentive-Compatible Bandit Exploration. Oper. Res. 68(4): 1132-1161 (2020) - [c251]Michal Feldman, Yishay Mansour, Noam Nisan, Sigal Oren, Moshe Tennenholtz: