
Ding-Xuan Zhou
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2021
- [j59]Ting Hu, Qiang Wu, Ding-Xuan Zhou:
Kernel gradient descent algorithm for information theoretic learning. J. Approx. Theory 263: 105518 (2021) - 2020
- [j58]Zhiying Fang
, Zheng-Chu Guo, Ding-Xuan Zhou:
Optimal learning rates for distribution regression. J. Complex. 56 (2020) - [j57]Shao-Bo Lin, Di Wang, Ding-Xuan Zhou:
Distributed Kernel Ridge Regression with Communications. J. Mach. Learn. Res. 21: 93:1-93:38 (2020) - [j56]Ding-Xuan Zhou
:
Theory of deep convolutional neural networks: Downsampling. Neural Networks 124: 319-327 (2020) - [j55]Zhiying Fang
, Han Feng
, Shuo Huang, Ding-Xuan Zhou
:
Theory of deep convolutional neural networks II: Spherical analysis. Neural Networks 131: 154-162 (2020) - [i19]Shao-Bo Lin, Di Wang, Ding-Xuan Zhou:
Distributed Kernel Ridge Regression with Communications. CoRR abs/2003.12210 (2020) - [i18]Zhi Han, Siquan Yu, Shao-Bo Lin, Ding-Xuan Zhou:
Depth Selection for Deep ReLU Nets in Feature Extraction and Generalization. CoRR abs/2004.00245 (2020) - [i17]Zhiying Fang, Han Feng, Shuo Huang, Ding-Xuan Zhou:
Theory of Deep Convolutional Neural Networks II: Spherical Analysis. CoRR abs/2007.14285 (2020)
2010 – 2019
- 2019
- [j54]Shao-Bo Lin, Yunwen Lei, Ding-Xuan Zhou:
Boosted Kernel Ridge Regression: Optimal Learning Rates and Early Stopping. J. Mach. Learn. Res. 20: 46:1-46:36 (2019) - [j53]Yunwen Lei
, Ürün Dogan, Ding-Xuan Zhou
, Marius Kloft
:
Data-Dependent Generalization Bounds for Multi-Class Classification. IEEE Trans. Inf. Theory 65(5): 2995-3021 (2019) - [c2]Yunwen Lei, Peng Yang, Ke Tang, Ding-Xuan Zhou:
Optimal Stochastic and Online Learning with Individual Iterates. NeurIPS 2019: 5416-5426 - [i16]Charles K. Chui, Shao-Bo Lin, Ding-Xuan Zhou:
Deep Neural Networks for Rotation-Invariance Approximation and Learning. CoRR abs/1904.01814 (2019) - [i15]Shao-Bo Lin, Yu Guang Wang
, Ding-Xuan Zhou:
Distributed filtered hyperinterpolation for noisy data on the sphere. CoRR abs/1910.02434 (2019) - [i14]Jinshan Zeng, Minrun Wu, Shao-Bo Lin, Ding-Xuan Zhou:
Fast Polynomial Kernel Classification for Massive Data. CoRR abs/1911.10558 (2019) - [i13]Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, Quanquan Gu:
Towards Understanding the Spectral Bias of Deep Learning. CoRR abs/1912.01198 (2019) - [i12]Charles K. Chui, Shao-Bo Lin, Bo Zhang, Ding-Xuan Zhou:
Realization of spatial sparseness by deep ReLU nets with massive data. CoRR abs/1912.07464 (2019) - 2018
- [j52]Junhong Lin, Lorenzo Rosasco, Silvia Villa
, Ding-Xuan Zhou:
Modified Fejér sequences and applications. Comput. Optim. Appl. 71(1): 95-113 (2018) - [j51]Andreas Christmann
, Dao-Hong Xiang
, Ding-Xuan Zhou:
Total stability of kernel methods. Neurocomputing 289: 101-118 (2018) - [j50]Yunwen Lei, Ding-Xuan Zhou:
Learning Theory of Randomized Sparse Kaczmarz Method. SIAM J. Imaging Sci. 11(1): 547-574 (2018) - [j49]Junhong Lin, Ding-Xuan Zhou
:
Online Learning Algorithms Can Converge Comparably Fast as Batch Learning. IEEE Trans. Neural Networks Learn. Syst. 29(6): 2367-2378 (2018) - [i11]Yunwen Lei, Ding-Xuan Zhou:
Convergence of Online Mirror Descent Algorithms. CoRR abs/1802.06357 (2018) - [i10]Charles K. Chui, Shaobo Lin, Ding-Xuan Zhou:
Construction of neural networks for realization of localized deep learning. CoRR abs/1803.03503 (2018) - [i9]Ding-Xuan Zhou:
Universality of Deep Convolutional Neural Networks. CoRR abs/1805.10769 (2018) - 2017
- [j48]Zheng-Chu Guo, Yiming Ying, Ding-Xuan Zhou:
Online regularized learning with pairwise loss functions. Adv. Comput. Math. 43(1): 127-150 (2017) - [j47]Junhong Lin, Yunwen Lei, Bo Zhang, Ding-Xuan Zhou:
Online pairwise learning algorithms with convex loss functions. Inf. Sci. 406: 57-70 (2017) - [j46]Bing-Zheng Li, Bo-Lu He, Ding-Xuan Zhou
:
Approximation on variable exponent spaces by linear integral operators. J. Approx. Theory 223: 29-51 (2017) - [j45]Xiangyu Chang, Shaobo Lin, Ding-Xuan Zhou:
Distributed Semi-supervised Learning with Kernel Ridge Regression. J. Mach. Learn. Res. 18: 46:1-46:22 (2017) - [j44]Shaobo Lin, Xin Guo, Ding-Xuan Zhou:
Distributed Learning with Regularized Least Squares. J. Mach. Learn. Res. 18: 92:1-92:31 (2017) - [j43]Yunwen Lei, Ding-Xuan Zhou:
Analysis of Online Composite Mirror Descent Algorithm. Neural Comput. 29(3): 825-860 (2017) - [i8]Yunwen Lei, Ürün Dogan, Ding-Xuan Zhou, Marius Kloft:
Generalization Error Bounds for Extreme Multi-class Classification. CoRR abs/1706.09814 (2017) - [i7]Andreas Christmann, Dao-Hong Xiang, Ding-Xuan Zhou:
Total stability of kernel methods. CoRR abs/1709.07625 (2017) - 2016
- [j42]Andreas Christmann
, Ding-Xuan Zhou:
On the robustness of regularized pairwise learning methods based on kernels. J. Complex. 37: 1-33 (2016) - [j41]Junhong Lin, Lorenzo Rosasco, Ding-Xuan Zhou:
Iterative Regularization for Learning with Convex Loss Functions. J. Mach. Learn. Res. 17: 77:1-77:38 (2016) - [j40]Xin Guo, Jun Fan, Ding-Xuan Zhou:
Sparsity and Error Analysis of Empirical Feature-Based Regularization Schemes. J. Mach. Learn. Res. 17: 89:1-89:34 (2016) - [j39]Yiming Ying, Ding-Xuan Zhou:
Online Pairwise Learning Algorithms. Neural Comput. 28(4): 743-777 (2016) - [j38]Ting Hu, Qiang Wu
, Ding-Xuan Zhou:
Convergence of Gradient Descent for Minimum Error Entropy Principle in Linear Regression. IEEE Trans. Signal Process. 64(24): 6571-6579 (2016) - [c1]Martin Boissier, Siwei Lyu, Yiming Ying, Ding-Xuan Zhou:
Fast Convergence of Online Pairwise Learning Algorithms. AISTATS 2016: 204-212 - [i6]Shaobo Lin, Xin Guo, Ding-Xuan Zhou:
Distributed Learning with Regularized Least Squares. CoRR abs/1608.03339 (2016) - 2015
- [j37]Junhong Lin, Ding-Xuan Zhou:
Learning theory of randomized Kaczmarz algorithm. J. Mach. Learn. Res. 16: 3341-3365 (2015) - [i5]Yiming Ying, Ding-Xuan Zhou:
Online Pairwise Learning Algorithms with Kernels. CoRR abs/1502.07229 (2015) - [i4]Yiming Ying, Ding-Xuan Zhou:
Unregularized Online Learning Algorithms with General Loss Functions. CoRR abs/1503.00623 (2015) - [i3]Ming Yuan, Ding-Xuan Zhou:
Minimax Optimal Rates of Estimation in High Dimensional Additive Models: Universal Phase Transition. CoRR abs/1503.02817 (2015) - 2014
- [j36]Anyue Chen, Junping Li, Yiqing Chen, Ding-Xuan Zhou:
Asymptotic Behaviour of Extinction Probability of Interacting Branching Collision Processes. J. Appl. Probab. 51(1): 219-234 (2014) - [i2]Jun Fan, Ting Hu, Qiang Wu, Ding-Xuan Zhou:
Consistency Analysis of an Empirical Minimum Error Entropy Algorithm. CoRR abs/1412.5272 (2014) - 2013
- [j35]Zheng-Chu Guo, Ding-Xuan Zhou
:
Concentration estimates for learning with unbounded sampling. Adv. Comput. Math. 38(1): 207-223 (2013) - [j34]Hong-Yan Wang, Quan-Wu Xiao, Ding-Xuan Zhou
:
An approximation theory approach to learning with ℓ1 regularization. J. Approx. Theory 167: 240-258 (2013) - [j33]Ting Hu, Jun Fan, Qiang Wu, Ding-Xuan Zhou:
Learning theory approach to minimum error entropy criterion. J. Mach. Learn. Res. 14(1): 377-397 (2013) - 2012
- [j32]Dao-Hong Xiang, Ting Hu, Ding-Xuan Zhou
:
Approximation Analysis of Learning Algorithms for Support Vector Regression and Quantile Regression. J. Appl. Math. 2012: 902139:1-902139:17 (2012) - [i1]Ting Hu, Jun Fan, Qiang Wu, Ding-Xuan Zhou:
Learning Theory Approach to Minimum Error Entropy Criterion. CoRR abs/1208.0848 (2012) - 2011
- [j31]Dao-Hong Xiang, Ting Hu, Ding-Xuan Zhou
:
Learning with varying insensitive loss. Appl. Math. Lett. 24(12): 2107-2109 (2011) - [j30]Cheng Wang, Ding-Xuan Zhou
:
Optimal learning rates for least squares regularized regression with unbounded sampling. J. Complex. 27(1): 55-67 (2011) - [j29]Lei Shi, Ding-Xuan Zhou
:
Normal estimation on manifolds by gradient learning. Numer. Linear Algebra Appl. 18(2): 249-259 (2011) - 2010
- [j28]Hong-Yan Wang, Dao-Hong Xiang, Ding-Xuan Zhou
:
Moving least-square method in learning theory. J. Approx. Theory 162(3): 599-614 (2010) - [j27]Lei Shi, Xin Guo
, Ding-Xuan Zhou
:
Hermite learning with gradient data. J. Comput. Appl. Math. 233(11): 3046-3059 (2010)
2000 – 2009
- 2009
- [j26]Xiang-Jun Zhou, Ding-Xuan Zhou
:
High order Parzen windows and randomized sampling. Adv. Comput. Math. 31(4): 349-368 (2009) - [j25]Jia Cai, Hongyan Wang, Ding-Xuan Zhou
:
Gradient learning in a classification setting by gradient descent. J. Approx. Theory 161(2): 674-692 (2009) - [j24]Dao-Hong Xiang, Ding-Xuan Zhou:
Classification with Gaussians and Convex Loss. J. Mach. Learn. Res. 10: 1447-1468 (2009) - [j23]Ting Hu, Ding-Xuan Zhou:
Online Learning with Samples Drawn from Non-identical Distributions. J. Mach. Learn. Res. 10: 2873-2898 (2009) - 2008
- [j22]Gui-Bo Ye
, Ding-Xuan Zhou
:
Learning and approximation by Gaussians on Riemannian manifolds. Adv. Comput. Math. 29(3): 291-310 (2008) - [j21]Qiang Wu
, Ding-Xuan Zhou
:
Learning with sample dependent hypothesis spaces. Comput. Math. Appl. 56(11): 2896-2907 (2008) - [j20]Zhi-Wei Pan, Dao-Hong Xiang, Quan-Wu Xiao, Ding-Xuan Zhou
:
Parzen windows for multi-class classification. J. Complex. 24(5-6): 606-618 (2008) - 2007
- [j19]Qiang Wu
, Yiming Ying
, Ding-Xuan Zhou
:
Multi-kernel regularized classifiers. J. Complex. 23(1): 108-134 (2007) - [j18]Yiming Ying, Ding-Xuan Zhou:
Learnability of Gaussians with Flexible Variances. J. Mach. Learn. Res. 8: 249-276 (2007) - 2006
- [j17]Ding-Xuan Zhou
, Kurt Jetter:
Approximation with polynomial kernels and SVM classifiers. Adv. Comput. Math. 25(1-3): 323-344 (2006) - [j16]Qiang Wu
, Yiming Ying
, Ding-Xuan Zhou
:
Learning Rates of Least-Square Regularized Regression. Found. Comput. Math. 6(2): 171-192 (2006) - [j15]Sayan Mukherjee, Ding-Xuan Zhou:
Learning Coordinate Covariances via Gradients. J. Mach. Learn. Res. 7: 519-549 (2006) - [j14]Yiming Ying
, Ding-Xuan Zhou
:
Online Regularized Classification Algorithms. IEEE Trans. Inf. Theory 52(11): 4775-4788 (2006) - 2005
- [j13]Qiang Wu, Ding-Xuan Zhou
:
SVM Soft Margin Classifiers: Linear Programming versus Quadratic Programming. Neural Comput. 17(5): 1160-1187 (2005) - 2004
- [j12]Felipe Cucker
, Steve Smale, Ding-Xuan Zhou
:
Modeling Language Evolution. Found. Comput. Math. 4(3): 315-343 (2004) - [j11]Di-Rong Chen, Qiang Wu, Yiming Ying, Ding-Xuan Zhou:
Support Vector Machine Soft Margin Classifiers: Error Analysis. J. Mach. Learn. Res. 5: 1143-1175 (2004) - 2003
- [j10]Gerlind Plonka
, Ding-Xuan Zhou
:
Properties of locally linearly independent refinable function vectors. J. Approx. Theory 122(1): 24-41 (2003) - [j9]Ding-Xuan Zhou
:
Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inf. Theory 49(7): 1743-1752 (2003) - 2002
- [j8]Hoi Ling Cheung, Canqin Tang, Ding-Xuan Zhou
:
Supports of Locally Linearly Independent M-Refinable Functions, Attractors of Iterated Function Systems and Tilings. Adv. Comput. Math. 17(3): 257-268 (2002) - [j7]Ding-Xuan Zhou
:
The covering number in learning theory. J. Complex. 18(3): 739-767 (2002) - [j6]Ding-Xuan Zhou
:
Interpolatory orthogonal multiwavelets and refinable functions. IEEE Trans. Signal Process. 50(3): 520-527 (2002) - 2001
- [j5]Geoff Boyd, Charles A. Micchelli, Gilbert Strang, Ding-Xuan Zhou
:
Binomial Matrices. Adv. Comput. Math. 14(4): 379-391 (2001) - [j4]Ding-Xuan Zhou
:
Self-Similar Lattice Tilings and Subdivision Schemes. SIAM J. Math. Anal. 33(1): 1-15 (2001) - 2000
- [j3]Rong-Qing Jia, Ding-Xuan Zhou:
Convergence of Subdivision Schemes Associated with Nonnegative Masks. SIAM J. Matrix Anal. Appl. 21(2): 418-430 (2000)
1990 – 1999
- 1999
- [j2]Rong-Qing Jia, Sherman D. Riemenschneider, Ding-Xuan Zhou:
Smoothness of Multiple Refinable Functions and Multiple Wavelets. SIAM J. Matrix Anal. Appl. 21(1): 1-28 (1999) - 1998
- [j1]Rong-Qing Jia, Sherman D. Riemenschneider, Ding-Xuan Zhou:
Vector subdivision schemes and multiple wavelets. Math. Comput. 67(224): 1533-1563 (1998)
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2021-02-18 22:14 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint