default search action
Tianbao Yang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c132]Zi-Hao Qiu, Siqi Guo, Mao Xu, Tuo Zhao, Lijun Zhang, Tianbao Yang:
To Cool or not to Cool? Temperature Network Meets Large Foundation Models via DRO. ICML 2024 - [c131]Ming Yang, Xiyuan Wei, Tianbao Yang, Yiming Ying:
Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms. ICML 2024 - [c130]Yongjian Zhong, Hieu Vu, Tianbao Yang, Bijaya Adhikari:
Efficient and Effective Implicit Dynamic Graph Neural Network. KDD 2024: 4595-4606 - [c129]Haoran Liu, Bokun Wang, Jianling Wang, Xiangjue Dong, Tianbao Yang, James Caverlee:
Everything Perturbed All at Once: Enabling Differentiable Graph Attacks. WWW (Companion Volume) 2024: 485-488 - [i120]Zi-Hao Qiu, Siqi Guo, Mao Xu, Tuo Zhao, Lijun Zhang, Tianbao Yang:
To Cool or not to Cool? Temperature Network Meets Large Foundation Models via DRO. CoRR abs/2404.04575 (2024) - [i119]Quanqi Hu, Qi Qi, Zhaosong Lu, Tianbao Yang:
Single-loop Stochastic Algorithms for Difference of Max-Structured Weakly Convex Functions. CoRR abs/2405.18577 (2024) - [i118]Ilgee Hong, Zichong Li, Alexander Bukharin, Yixiao Li, Haoming Jiang, Tianbao Yang, Tuo Zhao:
Adaptive Preference Scaling for Reinforcement Learning with Human Feedback. CoRR abs/2406.02764 (2024) - [i117]Qi Qi, Quanqi Hu, Qihang Lin, Tianbao Yang:
Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning. CoRR abs/2406.05686 (2024) - [i116]Yongjian Zhong, Hieu Vu, Tianbao Yang, Bijaya Adhikari:
Efficient and Effective Implicit Dynamic Graph Neural Network. CoRR abs/2406.17894 (2024) - [i115]Xiyuan Wei, Fanjiang Ye, Ori Yonay, Xingyu Chen, Baixi Sun, Dingwen Tao, Tianbao Yang:
FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources. CoRR abs/2407.01445 (2024) - [i114]Gang Li, Qihang Lin, Ayush Ghosh, Tianbao Yang:
Multi-Output Distributional Fairness via Post-Processing. CoRR abs/2409.00553 (2024) - 2023
- [j26]Tianbao Yang, Yiming Ying:
AUC Maximization in the Era of Big Data and AI: A Survey. ACM Comput. Surv. 55(8): 172:1-172:37 (2023) - [j25]Bokun Wang, Zhuoning Yuan, Yiming Ying, Tianbao Yang:
Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and Personalized Federated Learning. J. Mach. Learn. Res. 24: 145:1-145:46 (2023) - [j24]Zhishuai Guo, Yan Yan, Zhuoning Yuan, Tianbao Yang:
Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave Min-Max Problems with PL Condition. J. Mach. Learn. Res. 24: 148:1-148:63 (2023) - [j23]Qi Qi, Jiameng Lyu, Kung-Sik Chan, Er-Wei Bai, Tianbao Yang:
Stochastic Constrained DRO with a Complexity Independent of Sample Size. Trans. Mach. Learn. Res. 2023 (2023) - [j22]Qi Qi, Yi Xu, Wotao Yin, Rong Jin, Tianbao Yang:
Attentional-Biased Stochastic Gradient Descent. Trans. Mach. Learn. Res. 2023 (2023) - [c128]Yao Yao, Qihang Lin, Tianbao Yang:
Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints. AISTATS 2023: 10324-10342 - [c127]Zhishuai Guo, Rong Jin, Jiebo Luo, Tianbao Yang:
FeDXL: Provable Federated Learning for Deep X-Risk Optimization. ICML 2023: 11934-11966 - [c126]Quanqi Hu, Zi-Hao Qiu, Zhishuai Guo, Lijun Zhang, Tianbao Yang:
Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for Multi-Block Bilevel Optimization. ICML 2023: 13550-13583 - [c125]Wei Jiang, Jiayu Qin, Lingyu Wu, Changyou Chen, Tianbao Yang, Lijun Zhang:
Learning Unnormalized Statistical Models via Compositional Optimization. ICML 2023: 15105-15124 - [c124]Yunwen Lei, Tianbao Yang, Yiming Ying, Ding-Xuan Zhou:
Generalization Analysis for Contrastive Representation Learning. ICML 2023: 19200-19227 - [c123]Zi-Hao Qiu, Quanqi Hu, Zhuoning Yuan, Denny Zhou, Lijun Zhang, Tianbao Yang:
Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization. ICML 2023: 28389-28421 - [c122]Dixian Zhu, Bokun Wang, Zhi Chen, Yaxing Wang, Milan Sonka, Xiaodong Wu, Tianbao Yang:
Provable Multi-instance Deep AUC Maximization with Stochastic Pooling. ICML 2023: 43205-43227 - [c121]Dixian Zhu, Yiming Ying, Tianbao Yang:
Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity. ICML 2023: 43289-43325 - [c120]Zhuoning Yuan, Dixian Zhu, Zi-Hao Qiu, Gang Li, Xuanhui Wang, Tianbao Yang:
LibAUC: A Deep Learning Library for X-Risk Optimization. KDD 2023: 5487-5499 - [c119]Ryan King, Tianbao Yang, Bobak J. Mortazavi:
Multimodal Pretraining of Medical Time Series and Notes. ML4H@NeurIPS 2023: 244-255 - [c118]Lijun Zhang, Peng Zhao, Zhen-Hua Zhuang, Tianbao Yang, Zhi-Hua Zhou:
Stochastic Approximation Approaches to Group Distributionally Robust Optimization. NeurIPS 2023 - [c117]Bang An, Xun Zhou, Yongjian Zhong, Tianbao Yang:
SpatialRank: Urban Event Ranking with NDCG Optimization on Spatiotemporal Data. NeurIPS 2023 - [c116]Quanqi Hu, Dixian Zhu, Tianbao Yang:
Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization. NeurIPS 2023 - [c115]Gang Li, Wei Tong, Tianbao Yang:
Maximization of Average Precision for Deep Learning with Adversarial Ranking Robustness. NeurIPS 2023 - [c114]Xinwen Zhang, Yihan Zhang, Tianbao Yang, Richard Souvenir, Hongchang Gao:
Federated Compositional Deep AUC Maximization. NeurIPS 2023 - [i113]Lijun Zhang, Peng Zhao, Tianbao Yang, Zhi-Hua Zhou:
Stochastic Approximation Approaches to Group Distributionally Robust Optimization. CoRR abs/2302.09267 (2023) - [i112]Yunwen Lei, Tianbao Yang, Yiming Ying, Ding-Xuan Zhou:
Generalization Analysis for Contrastive Representation Learning. CoRR abs/2302.12383 (2023) - [i111]Xinwen Zhang, Yihan Zhang, Tianbao Yang, Richard Souvenir, Hongchang Gao:
Federated Compositional Deep AUC Maximization. CoRR abs/2304.10101 (2023) - [i110]Dixian Zhu, Bokun Wang, Zhi Chen, Yaxing Wang, Milan Sonka, Xiaodong Wu, Tianbao Yang:
Provable Multi-instance Deep AUC Maximization with Stochastic Pooling. CoRR abs/2305.08040 (2023) - [i109]Zi-Hao Qiu, Quanqi Hu, Zhuoning Yuan, Denny Zhou, Lijun Zhang, Tianbao Yang:
Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization. CoRR abs/2305.11965 (2023) - [i108]Quanqi Hu, Zi-Hao Qiu, Zhishuai Guo, Lijun Zhang, Tianbao Yang:
Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for Multi-Block Bilevel Optimization. CoRR abs/2305.18730 (2023) - [i107]Zhuoning Yuan, Dixian Zhu, Zi-Hao Qiu, Gang Li, Xuanhui Wang, Tianbao Yang:
LibAUC: A Deep Learning Library for X-Risk Optimization. CoRR abs/2306.03065 (2023) - [i106]Wei Jiang, Jiayu Qin, Lingyu Wu, Changyou Chen, Tianbao Yang, Lijun Zhang:
Learning Unnormalized Statistical Models via Compositional Optimization. CoRR abs/2306.07485 (2023) - [i105]Ming Yang, Xiyuan Wei, Tianbao Yang, Yiming Ying:
Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms. CoRR abs/2307.03357 (2023) - [i104]Haoran Liu, Bokun Wang, Jianling Wang, Xiangjue Dong, Tianbao Yang, James Caverlee:
Everything Perturbed All at Once: Enabling Differentiable Graph Attacks. CoRR abs/2308.15614 (2023) - [i103]Bang An, Xun Zhou, Yongjian Zhong, Tianbao Yang:
SpatialRank: Urban Event Ranking with NDCG Optimization on Spatiotemporal Data. CoRR abs/2310.00270 (2023) - [i102]Quanqi Hu, Dixian Zhu, Tianbao Yang:
Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization. CoRR abs/2310.03234 (2023) - [i101]Jianzhi Xv, Gang Li, Tianbao Yang:
AUC-mixup: Deep AUC Maximization with Mixup. CoRR abs/2310.11693 (2023) - [i100]Bokun Wang, Tianbao Yang:
ALEXR: Optimal Single-Loop Algorithms for Convex Finite-Sum Coupled Compositional Stochastic Optimization. CoRR abs/2312.02277 (2023) - [i99]Ryan King, Tianbao Yang, Bobak Mortazavi:
Multimodal Pretraining of Medical Time Series and Notes. CoRR abs/2312.06855 (2023) - 2022
- [j21]Hassan Rafique, Mingrui Liu, Qihang Lin, Tianbao Yang:
Weakly-convex-concave min-max optimization: provable algorithms and applications in machine learning. Optim. Methods Softw. 37(3): 1087-1121 (2022) - [j20]Qingqing Hong, Xinyi Zhong, Weitong Chen, Zhenghua Zhang, Bin Li, Hao Sun, Tianbao Yang, Changwei Tan:
SATNet: A Spatial Attention Based Network for Hyperspectral Image Classification. Remote. Sens. 14(22): 5902 (2022) - [c113]Guanghui Wang, Ming Yang, Lijun Zhang, Tianbao Yang:
Momentum Accelerates the Convergence of Stochastic AUPRC Maximization. AISTATS 2022: 3753-3771 - [c112]Zhuoning Yuan, Zhishuai Guo, Nitesh V. Chawla, Tianbao Yang:
Compositional Training for End-to-End Deep AUC Maximization. ICLR 2022 - [c111]Wei Jiang, Bokun Wang, Yibo Wang, Lijun Zhang, Tianbao Yang:
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization. ICML 2022: 10195-10216 - [c110]Zi-Hao Qiu, Quanqi Hu, Yongjian Zhong, Lijun Zhang, Tianbao Yang:
Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence. ICML 2022: 18122-18152 - [c109]Bokun Wang, Tianbao Yang:
Finite-Sum Coupled Compositional Stochastic Optimization: Theory and Applications. ICML 2022: 23292-23317 - [c108]Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, Shuiwang Ji:
GraphFM: Improving Large-Scale GNN Training via Feature Momentum. ICML 2022: 25684-25701 - [c107]Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, Tianbao Yang:
Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance. ICML 2022: 25760-25782 - [c106]Lijun Zhang, Guanghui Wang, Jinfeng Yi, Tianbao Yang:
A Simple yet Universal Strategy for Online Convex Optimization. ICML 2022: 26605-26623 - [c105]Dixian Zhu, Gang Li, Bokun Wang, Xiaodong Wu, Tianbao Yang:
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee. ICML 2022: 27548-27573 - [c104]Quanqi Hu, Yongjian Zhong, Tianbao Yang:
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization. NeurIPS 2022 - [c103]Wei Jiang, Gang Li, Yibo Wang, Lijun Zhang, Tianbao Yang:
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization. NeurIPS 2022 - [c102]Yao Yao, Qihang Lin, Tianbao Yang:
Large-scale Optimization of Partial AUC in a Range of False Positive Rates. NeurIPS 2022 - [c101]Lijun Zhang, Wei Jiang, Jinfeng Yi, Tianbao Yang:
Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor. NeurIPS 2022 - [i98]Wei Jiang, Bokun Wang, Yibo Wang, Lijun Zhang, Tianbao Yang:
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization. CoRR abs/2202.07530 (2022) - [i97]Zi-Hao Qiu, Quanqi Hu, Yongjian Zhong, Lijun Zhang, Tianbao Yang:
Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence. CoRR abs/2202.12183 (2022) - [i96]Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, Tianbao Yang:
Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance. CoRR abs/2202.12387 (2022) - [i95]Bokun Wang, Tianbao Yang:
Finite-Sum Compositional Stochastic Optimization: Theory and Applications. CoRR abs/2202.12396 (2022) - [i94]Dixian Zhu, Gang Li, Bokun Wang, Xiaodong Wu, Tianbao Yang:
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee. CoRR abs/2203.00176 (2022) - [i93]Yao Yao, Qihang Lin, Tianbao Yang:
Large-scale Optimization of Partial AUC in a Range of False Positive Rates. CoRR abs/2203.01505 (2022) - [i92]Dixian Zhu, Xiaodong Wu, Tianbao Yang:
Benchmarking Deep AUROC Optimization: Loss Functions and Algorithmic Choices. CoRR abs/2203.14177 (2022) - [i91]Tianbao Yang, Yiming Ying:
AUC Maximization in the Era of Big Data and AI: A Survey. CoRR abs/2203.15046 (2022) - [i90]Lijun Zhang, Wei Jiang, Jinfeng Yi, Tianbao Yang:
Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor. CoRR abs/2205.00741 (2022) - [i89]Quanqi Hu, Yongjian Zhong, Tianbao Yang:
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization. CoRR abs/2206.00260 (2022) - [i88]Tianbao Yang:
Algorithmic Foundation of Deep X-Risk Optimization. CoRR abs/2206.00439 (2022) - [i87]Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, Shuiwang Ji:
GraphFM: Improving Large-Scale GNN Training via Feature Momentum. CoRR abs/2206.07161 (2022) - [i86]Wei Jiang, Gang Li, Yibo Wang, Lijun Zhang, Tianbao Yang:
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization. CoRR abs/2207.08540 (2022) - [i85]Qi Qi, Jiameng Lyu, Kung-Sik Chan, Er-Wei Bai, Tianbao Yang:
Stochastic Constrained DRO with a Complexity Independent of Sample Size. CoRR abs/2210.05740 (2022) - [i84]Qi Qi, Shervin Ardeshir, Yi Xu, Tianbao Yang:
Fairness via Adversarial Attribute Neighbourhood Robust Learning. CoRR abs/2210.06630 (2022) - [i83]Zhishuai Guo, Rong Jin, Jiebo Luo, Tianbao Yang:
FedX: Federated Learning for Compositional Pairwise Risk Optimization. CoRR abs/2210.14396 (2022) - [i82]Yao Yao, Qihang Lin, Tianbao Yang:
Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints. CoRR abs/2212.12603 (2022) - 2021
- [j19]Yaohui Zeng, Tianbao Yang, Patrick Breheny:
Hybrid safe-strong rules for efficient optimization in lasso-type problems. Comput. Stat. Data Anal. 153: 107063 (2021) - [j18]Mingrui Liu, Hassan Rafique, Qihang Lin, Tianbao Yang:
First-order Convergence Theory for Weakly-Convex-Weakly-Concave Min-max Problems. J. Mach. Learn. Res. 22: 169:1-169:34 (2021) - [c100]Zhuoning Yuan, Yan Yan, Milan Sonka, Tianbao Yang:
Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification. ICCV 2021: 3020-3029 - [c99]Yunwen Lei, Zhenhuan Yang, Tianbao Yang, Yiming Ying:
Stability and Generalization of Stochastic Gradient Methods for Minimax Problems. ICML 2021: 6175-6186 - [c98]Zhuoning Yuan, Zhishuai Guo, Yi Xu, Yiming Ying, Tianbao Yang:
Federated Deep AUC Maximization for Hetergeneous Data with a Constant Communication Complexity. ICML 2021: 12219-12229 - [c97]Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, Tianbao Yang:
Stochastic Optimization of Areas Under Precision-Recall Curves with Provable Convergence. NeurIPS 2021: 1752-1765 - [c96]Qi Qi, Zhishuai Guo, Yi Xu, Rong Jin, Tianbao Yang:
An Online Method for A Class of Distributionally Robust Optimization with Non-convex Objectives. NeurIPS 2021: 10067-10080 - [c95]Lijun Zhang, Wei Jiang, Shiyin Lu, Tianbao Yang:
Revisiting Smoothed Online Learning. NeurIPS 2021: 13599-13612 - [c94]Zhenhuan Yang, Yunwen Lei, Puyu Wang, Tianbao Yang, Yiming Ying:
Simple Stochastic and Online Gradient Descent Algorithms for Pairwise Learning. NeurIPS 2021: 20160-20171 - [c93]Guanghui Wang, Yuanyu Wan, Tianbao Yang, Lijun Zhang:
Online Convex Optimization with Continuous Switching Constraint. NeurIPS 2021: 28636-28647 - [i81]Zhuoning Yuan, Zhishuai Guo, Yi Xu, Yiming Ying, Tianbao Yang:
Federated Deep AUC Maximization for Heterogeneous Data with a Constant Communication Complexity. CoRR abs/2102.04635 (2021) - [i80]Lijun Zhang, Wei Jiang, Shiyin Lu, Tianbao Yang:
Revisiting Smoothed Online Learning. CoRR abs/2102.06933 (2021) - [i79]Guanghui Wang, Yuanyu Wan, Tianbao Yang, Lijun Zhang:
Online Convex Optimization with Continuous Switching Constraint. CoRR abs/2103.11370 (2021) - [i78]Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, Tianbao Yang:
Stochastic Optimization of Area Under Precision-Recall Curve for Deep Learning with Provable Convergence. CoRR abs/2104.08736 (2021) - [i77]Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, Tianbao Yang:
On Stochastic Moving-Average Estimators for Non-Convex Optimization. CoRR abs/2104.14840 (2021) - [i76]Zhishuai Guo, Tianbao Yang:
Randomized Stochastic Variance-Reduced Methods for Stochastic Bilevel Optimization. CoRR abs/2105.02266 (2021) - [i75]Lijun Zhang, Guanghui Wang, Jinfeng Yi, Tianbao Yang:
A Simple yet Universal Strategy for Online Convex Optimization. CoRR abs/2105.03681 (2021) - [i74]Yunwen Lei, Zhenhuan Yang, Tianbao Yang, Yiming Ying:
Stability and Generalization of Stochastic Gradient Methods for Minimax Problems. CoRR abs/2105.03793 (2021) - [i73]Bokun Wang, Zhuoning Yuan, Yiming Ying, Tianbao Yang:
Memory-based Optimization Methods for Model-Agnostic Meta-Learning. CoRR abs/2106.04911 (2021) - [i72]Guanghui Wang, Ming Yang, Lijun Zhang, Tianbao Yang:
Momentum Accelerates the Convergence of Stochastic AUPRC Maximization. CoRR abs/2107.01173 (2021) - [i71]Tianbao Yang:
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities. CoRR abs/2111.02400 (2021) - [i70]Zhenhuan Yang, Yunwen Lei, Puyu Wang, Tianbao Yang, Yiming Ying:
Simple Stochastic and Online Gradient Descent Algorithms for Pairwise Learning. CoRR abs/2111.12050 (2021) - [i69]Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, Tianbao Yang:
A Novel Convergence Analysis for Algorithms of the Adam Family. CoRR abs/2112.03459 (2021) - [i68]Dixian Zhu, Tianbao Yang:
A Unified DRO View of Multi-class Loss Functions with top-N Consistency. CoRR abs/2112.14869 (2021) - 2020
- [j17]Qihang Lin, Selvaprabu Nadarajah, Negar Soheili, Tianbao Yang:
A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints. J. Mach. Learn. Res. 21: 143:1-143:45 (2020) - [j16]Soumitra Pal, Tingyang Xu, Tianbao Yang, Sanguthevar Rajasekaran, Jinbo Bi:
Hybrid-DCA: A double asynchronous approach for stochastic dual coordinate ascent. J. Parallel Distributed Comput. 143: 47-66 (2020) - [j15]Tianbao Yang, Lijun Zhang, Qihang Lin, Shenghuo Zhu, Rong Jin:
High-dimensional model recovery from random sketched data by exploring intrinsic sparsity. Mach. Learn. 109(5): 899-938 (2020) - [c92]Dixian Zhu, Dongjin Song, Yuncong Chen, Cristian Lumezanu, Wei Cheng, Bo Zong, Jingchao Ni, Takehiko Mizoguchi, Tianbao Yang, Haifeng Chen:
Deep Unsupervised Binary Coding Networks for Multivariate Time Series Retrieval. AAAI 2020: 1403-1411 - [c91]Pingbo Pan, Ping Liu, Yan Yan, Tianbao Yang, Yi Yang:
Adversarial Localized Energy Network for Structured Prediction. AAAI 2020: 5347-5354 - [c90]Lijun Zhang, Shiyin Lu, Tianbao Yang:
Minimizing Dynamic Regret and Adaptive Regret Simultaneously. AISTATS 2020: 309-319 - [c89]Qi Qi, Yan Yan, Zixuan Wu, Xiaoyu Wang, Tianbao Yang:
A Simple and Effective Framework for Pairwise Deep Metric Learning. ECCV (27) 2020: 375-391 - [c88]Zhuoning Yuan, Zhishuai Guo, Xiaotian Yu, Xiaoyu Wang, Tianbao Yang:
Accelerating Deep Learning with Millions of Classes. ECCV (23) 2020: 711-726 - [c87]Mingrui Liu, Youssef Mroueh, Jerret Ross, Wei Zhang, Xiaodong Cui, Payel Das, Tianbao Yang:
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets. ICLR 2020 - [c86]Mingrui Liu, Zhuoning Yuan, Yiming Ying, Tianbao Yang:
Stochastic AUC Maximization with Deep Neural Networks. ICLR 2020 - [c85]Zhishuai Guo, Mingrui Liu, Zhuoning Yuan, Li Shen, Wei Liu, Tianbao Yang:
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks. ICML 2020: 3864-3874 - [c84]Runchao Ma, Qihang Lin, Tianbao Yang:
Quadratically Regularized Subgradient Methods for Weakly Convex Optimization with Weakly Convex Constraints. ICML 2020: 6554-6564 - [c83]Yan Yan, Yi Xu, Lijun Zhang, Xiaoyu Wang, Tianbao Yang:
Stochastic Optimization for Non-convex Inf-Projection Problems. ICML 2020: 10660-10669 - [c82]Yan Yan, Yi Xu, Qihang Lin, Wei Liu, Tianbao Yang:
Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization. NeurIPS 2020 - [c81]Yunhui Guo, Mingrui Liu, Tianbao Yang, Tajana Rosing:
Improved Schemes for Episodic Memory-based Lifelong Learning. NeurIPS 2020 - [c80]Mingrui Liu, Wei Zhang, Youssef Mroueh, Xiaodong Cui, Jarret Ross, Tianbao Yang, Payel Das:
A Decentralized Parallel Algorithm for Training Generative Adversarial Nets. NeurIPS 2020 - [i67]Lijun Zhang, Shiyin Lu, Tianbao Yang:
Minimizing Dynamic Regret and Adaptive Regret Simultaneously. CoRR abs/2002.02085 (2020) - [i66]Yan Yan, Yi Xu, Qihang Lin, Wei Liu, Tianbao Yang:
Sharp Analysis of Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization. CoRR abs/2002.05309 (2020) - [i65]Zhishuai Guo, Zixuan Wu, Yan Yan, Xiaoyu Wang, Tianbao Yang:
Revisiting SGD with Increasingly Weighted Averaging: Optimization and Generalization Perspectives. CoRR abs/2003.04339 (2020) - [i64]Zhishuai Guo, Mingrui Liu, Zhuoning Yuan, Li Shen, Wei Liu, Tianbao Yang:
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks. CoRR abs/2005.02426 (2020) - [i63]Zhishuai Guo, Zhuoning Yuan, Yan Yan, Tianbao Yang:
Fast Objective and Duality Gap Convergence for Non-convex Strongly-concave Min-max Problems. CoRR abs/2006.06889 (2020)