default search action
Nir Friedman
Person information
- affiliation: Hebrew University of Jerusalem, Israel
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2010 – 2019
- 2019
- [j35]Mor Nitzan, Nikos Karaiskos, Nir Friedman, Nikolaus Rajewsky:
Gene expression cartography. Nat. 576(7785): 132-137 (2019) - 2017
- [j34]Nili Tickotsky, Tal Sagiv, Jaime Prilusky, Eric Shifrut, Nir Friedman:
McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinform. 33(18): 2924-2929 (2017) - 2014
- [j33]Niclas Thomas, Katharine Best, Mattia Cinelli, Shlomit Reich-Zeliger, Hilah Gal, Eric Shifrut, Asaf Madi, Nir Friedman, John Shawe-Taylor, Benny Chain:
Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a complex antigen using short stretches of CDR3 protein sequence. Bioinform. 30(22): 3181-3188 (2014) - 2013
- [i35]Tal El-Hay, Nir Friedman:
Incorporating Expressive Graphical Models in Variational Approximations: Chain-Graphs and Hidden Variables. CoRR abs/1301.2268 (2013) - [i34]Gal Elidan, Nir Friedman:
Learning the Dimensionality of Hidden Variables. CoRR abs/1301.2269 (2013) - [i33]Nir Friedman, Ori Mosenzon, Noam Slonim, Naftali Tishby:
Multivariate Information Bottleneck. CoRR abs/1301.2270 (2013) - [i32]Nir Friedman, Dan Geiger, Noam Lotner:
Likelihood Computations Using Value Abstractions. CoRR abs/1301.3855 (2013) - [i31]Nir Friedman, Daphne Koller:
Being Bayesian about Network Structure. CoRR abs/1301.3856 (2013) - [i30]Nir Friedman, Iftach Nachman:
Gaussian Process Networks. CoRR abs/1301.3857 (2013) - [i29]Adnan Darwiche, Nir Friedman:
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (2002). CoRR abs/1301.4608 (2013) - [i28]Xavier Boyen, Nir Friedman, Daphne Koller:
Discovering the Hidden Structure of Complex Dynamic Systems. CoRR abs/1301.6683 (2013) - [i27]Richard Dearden, Nir Friedman, David Andre:
Model-Based Bayesian Exploration. CoRR abs/1301.6690 (2013) - [i26]Nir Friedman, Moisés Goldszmidt, Abraham J. Wyner:
Data Analysis with Bayesian Networks: A Bootstrap Approach. CoRR abs/1301.6695 (2013) - [i25]Nir Friedman, Iftach Nachman, Dana Pe'er:
Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm. CoRR abs/1301.6696 (2013) - [i24]Nir Friedman:
The Bayesian Structural EM Algorithm. CoRR abs/1301.7373 (2013) - [i23]Nir Friedman, Kevin P. Murphy, Stuart Russell:
Learning the Structure of Dynamic Probabilistic Networks. CoRR abs/1301.7374 (2013) - [i22]Nir Friedman, Moisés Goldszmidt:
Sequential Update of Bayesian Network Structure. CoRR abs/1302.1538 (2013) - [i21]Nir Friedman, Stuart Russell:
Image Segmentation in Video Sequences: A Probabilistic Approach. CoRR abs/1302.1539 (2013) - [i20]Craig Boutilier, Nir Friedman, Moisés Goldszmidt, Daphne Koller:
Context-Specific Independence in Bayesian Networks. CoRR abs/1302.3562 (2013) - [i19]Nir Friedman, Moisés Goldszmidt:
Learning Bayesian Networks with Local Structure. CoRR abs/1302.3577 (2013) - [i18]Nir Friedman, Joseph Y. Halpern:
A Qualitative Markov Assumption and its Implications for Belief Change. CoRR abs/1302.3578 (2013) - [i17]Nir Friedman, Zohar Yakhini:
On the Sample Complexity of Learning Bayesian Networks. CoRR abs/1302.3579 (2013) - [i16]Nir Friedman, Joseph Y. Halpern:
Plausibility Measures: A User's Guide. CoRR abs/1302.4947 (2013) - 2012
- [j32]Yonatan Savir, Nir Waysbort, Yaron E. Antebi, Tsvi Tlusty, Nir Friedman:
Balancing speed and accuracy of polyclonal T cell activation: a role for extracellular feedback. BMC Syst. Biol. 6: 111 (2012) - [i15]Ofer Meshi, Ariel Jaimovich, Amir Globerson, Nir Friedman:
Convexifying the Bethe Free Energy. CoRR abs/1205.2624 (2012) - [i14]Ido Cohn, Tal El-Hay, Nir Friedman, Raz Kupferman:
Mean Field Variational Approximation for Continuous-Time Bayesian Networks. CoRR abs/1205.2655 (2012) - [i13]Tal El-Hay, Nir Friedman, Raz Kupferman:
Gibbs Sampling in Factorized Continuous-Time Markov Processes. CoRR abs/1206.3251 (2012) - [i12]Ariel Jaimovich, Ofer Meshi, Nir Friedman:
Template Based Inference in Symmetric Relational Markov Random Fields. CoRR abs/1206.5276 (2012) - [i11]Nir Friedman, Raz Kupferman:
Dimension Reduction in Singularly Perturbed Continuous-Time Bayesian Networks. CoRR abs/1206.6835 (2012) - [i10]Tal El-Hay, Nir Friedman, Daphne Koller, Raz Kupferman:
Continuous Time Markov Networks. CoRR abs/1206.6838 (2012) - [i9]Iftach Nachman, Gal Elidan, Nir Friedman:
"Ideal Parent" Structure Learning for Continuous Variable Networks. CoRR abs/1207.4133 (2012) - [i8]Gal Elidan, Nir Friedman:
The Information Bottleneck EM Algorithm. CoRR abs/1212.2460 (2012) - [i7]Eran Segal, Dana Pe'er, Aviv Regev, Daphne Koller, Nir Friedman:
Learning Module Networks. CoRR abs/1212.2517 (2012) - 2011
- [j31]Noa Novershtern, Aviv Regev, Nir Friedman:
Physical Module Networks: an integrative approach for reconstructing transcription regulation. Bioinform. 27(13): 177-185 (2011) - [j30]Julia Sivriver, Naomi Habib, Nir Friedman:
An integrative clustering and modeling algorithm for dynamical gene expression data. Bioinform. 27(13): 392-400 (2011) - 2010
- [j29]Ariel Jaimovich, Ruty Rinott, Maya Schuldiner, Hanah Margalit, Nir Friedman:
Modularity and directionality in genetic interaction maps. Bioinform. 26(12): 228-236 (2010) - [j28]Ido Cohn, Tal El-Hay, Nir Friedman, Raz Kupferman:
Mean Field Variational Approximation for Continuous-Time Bayesian Networks. J. Mach. Learn. Res. 11: 2745-2783 (2010) - [c74]Tal El-Hay, Ido Cohn, Nir Friedman, Raz Kupferman:
Continuous-Time Belief Propagation. ICML 2010: 343-350
2000 – 2009
- 2009
- [b2]Daphne Koller, Nir Friedman:
Probabilistic Graphical Models - Principles and Techniques. MIT Press 2009, ISBN 978-0-262-01319-2, pp. I-XXXV, 1-1231 - [j27]Manuel Garber, Mitchell Guttman, Michele E. Clamp, Michael C. Zody, Nir Friedman, Xiaohui Xie:
Identifying novel constrained elements by exploiting biased substitution patterns. Bioinform. 25(12) (2009) - [c73]Ido Cohn, Tal El-Hay, Nir Friedman, Raz Kupferman:
Mean Field Variational Approximation for Continuous-Time Bayesian Networks. UAI 2009: 91-100 - [c72]Ofer Meshi, Ariel Jaimovich, Amir Globerson, Nir Friedman:
Convexifying the Bethe Free Energy. UAI 2009: 402-410 - 2008
- [j26]Naomi Habib, Tommy Kaplan, Hanah Margalit, Nir Friedman:
A Novel Bayesian DNA Motif Comparison Method for Clustering and Retrieval. PLoS Comput. Biol. 4(2) (2008) - [j25]Helman I. Stern, Ofer Hadar, Nir Friedman:
Optimal video stream multiplexing through linear programming. Signal Process. Image Commun. 23(3): 224-238 (2008) - [c71]Moran Yassour, Tommy Kaplan, Ariel Jaimovich, Nir Friedman:
Nucleosome positioning from tiling microarray data. ISMB 2008: 139-146 - [c70]Tal El-Hay, Nir Friedman, Raz Kupferman:
Gibbs Sampling in Factorized Continuous-Time Markov Processes. UAI 2008: 169-178 - 2007
- [j24]Matan Ninio, Eyal Privman, Tal Pupko, Nir Friedman:
Phylogeny reconstruction: increasing the accuracy of pairwise distance estimation using Bayesian inference of evolutionary rates. Bioinform. 23(2): 136-141 (2007) - [j23]Gal Elidan, Iftach Nachman, Nir Friedman:
"Ideal Parent" Structure Learning for Continuous Variable Bayesian Networks. J. Mach. Learn. Res. 8: 1799-1833 (2007) - [c69]Ilan Wapinski, Avi Pfeffer, Nir Friedman, Aviv Regev:
Automatic genome-wide reconstruction of phylogenetic gene trees. ISMB/ECCB (Supplement of Bioinformatics) 2007: 549-558 - [c68]Ariel Jaimovich, Ofer Meshi, Nir Friedman:
Template Based Inference in Symmetric Relational Markov Random Fields. UAI 2007: 191-199 - 2006
- [j22]Ariel Jaimovich, Gal Elidan, Hanah Margalit, Nir Friedman:
Towards an Integrated Protein-Protein Interaction Network: A Relational Markov Network Approach. J. Comput. Biol. 13(2): 145-164 (2006) - [j21]Noam Slonim, Nir Friedman, Naftali Tishby:
Multivariate Information Bottleneck. Neural Comput. 18(8): 1739-1789 (2006) - [c67]Tal El-Hay, Nir Friedman, Daphne Koller, Raz Kupferman:
Continuous Time Markov Networks. UAI 2006 - [c66]Nir Friedman, Raz Kupferman:
Dimension Reduction in Singularly Perturbed Continuous-Time Bayesian Networks. UAI 2006 - 2005
- [j20]Yoseph Barash, Gal Elidan, Tommy Kaplan, Nir Friedman:
CIS: compound importance sampling method for protein-DNA binding site p-value estimation. Bioinform. 21(5): 596-600 (2005) - [j19]Gal Elidan, Nir Friedman:
Learning Hidden Variable Networks: The Information Bottleneck Approach. J. Mach. Learn. Res. 6: 81-127 (2005) - [j18]Eran Segal, Dana Pe'er, Aviv Regev, Daphne Koller, Nir Friedman:
Learning Module Networks. J. Mach. Learn. Res. 6: 557-588 (2005) - [j17]Tommy Kaplan, Nir Friedman, Hanah Margalit:
Ab Initio Prediction of Transcription Factor Targets Using Structural Knowledge. PLoS Comput. Biol. 1(1) (2005) - [c65]Itay Mayrose, Nir Friedman, Tal Pupko:
A Gamma mixture model better accounts for among site rate heterogeneity. ECCB/JBI 2005: 158 - [c64]Ariel Jaimovich, Gal Elidan, Hanah Margalit, Nir Friedman:
Towards an Integrated Protein-Protein Interaction Network. RECOMB 2005: 14-30 - [c63]Tommy Kaplan, Nir Friedman, Hanah Margalit:
Predicting Transcription Factor Binding Sites Using Structural Knowledge. RECOMB 2005: 522-537 - 2004
- [j16]Yoseph Barash, Elinor Dehan, Meir Krupsky, Wilbur Franklin, Marc Geraci, Nir Friedman, Naftali Kaminski:
Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays. Bioinform. 20(6): 839-846 (2004) - [j15]Gill Bejerano, Nir Friedman, Naftali Tishby:
Efficient Exact p-Value Computation for Small Sample, Sparse, and Surprising Categorical Data. J. Comput. Biol. 11(5): 867-886 (2004) - [c62]Iftach Nachman, Aviv Regev, Nir Friedman:
Inferring quantitative models of regulatory networks from expression data. ISMB/ECCB (Supplement of Bioinformatics) 2004: 248-256 - [c61]Iftach Nachman, Gal Elidan, Nir Friedman:
"Ideal Parent" Structure Learning for Continuous Variable Networks. UAI 2004: 400-409 - 2003
- [j14]Nir Friedman, Daphne Koller:
Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks. Mach. Learn. 50(1-2): 95-125 (2003) - [c60]Nir Friedman:
Probabilistic models for identifying regulation networks. ECCB 2003: 57 - [c59]Yoseph Barash, Gal Elidan, Nir Friedman, Tommy Kaplan:
Modeling dependencies in protein-DNA binding sites. RECOMB 2003: 28-37 - [c58]Gal Elidan, Nir Friedman:
The Information Bottleneck EM Algorithm. UAI 2003: 200-208 - [c57]Eran Segal, Dana Pe'er, Aviv Regev, Daphne Koller, Nir Friedman:
Learning Module Networks. UAI 2003: 525-534 - [i6]Nir Friedman, Joseph Y. Halpern:
Modeling Belief in Dynamic Systems, Part I: Foundations. CoRR cs.AI/0307070 (2003) - [i5]Nir Friedman, Joseph Y. Halpern:
Modeling Belief in Dynamic Systems, Part II: Revisions and Update. CoRR cs.AI/0307071 (2003) - 2002
- [j13]Tal Pupko, Itsik Pe'er, Masami Hasegawa, Dan Graur, Nir Friedman:
A branch-and-bound algorithm for the inference of ancestral amino-acid sequences when the replacement rate varies among sites: Application to the evolution of five gene families. Bioinform. 18(8): 1116-1123 (2002) - [j12]Yoseph Barash, Nir Friedman:
Context-Specific Bayesian Clustering for Gene Expression Data. J. Comput. Biol. 9(2): 169-191 (2002) - [j11]Nir Friedman, Matan Ninio, Itsik Pe'er, Tal Pupko:
A Structural EM Algorithm for Phylogenetic Inference. J. Comput. Biol. 9(2): 331-353 (2002) - [j10]Lise Getoor, Nir Friedman, Daphne Koller, Benjamin Taskar:
Learning Probabilistic Models of Link Structure. J. Mach. Learn. Res. 3: 679-707 (2002) - [c56]Gal Elidan, Matan Ninio, Nir Friedman, Dale Schuurmans:
Data Perturbation for Escaping Local Maxima in Learning. AAAI/IAAI 2002: 132-139 - [c55]Eran Segal, Yoseph Barash, Itamar Simon, Nir Friedman, Daphne Koller:
From promoter sequence to expression: a probabilistic framework. RECOMB 2002: 263-272 - [c54]Noam Slonim, Nir Friedman, Naftali Tishby:
Unsupervised document classification using sequential information maximization. SIGIR 2002: 129-136 - [c53]Shai Shalev-Shwartz, Shlomo Dubnov, Nir Friedman, Yoram Singer:
Robust temporal and spectral modeling for query By melody. SIGIR 2002: 331-338 - [e1]Adnan Darwiche, Nir Friedman:
UAI '02, Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence, University of Alberta, Edmonton, Alberta, Canada, August 1-4, 2002. Morgan Kaufmann 2002, ISBN 1-55860-897-4 [contents] - 2001
- [j9]Ronen I. Brafman, Nir Friedman:
On decision-theoretic foundations for defaults. Artif. Intell. 133(1-2): 1-33 (2001) - [j8]Nir Friedman, Joseph Y. Halpern:
Plausibility measures and default reasoning. J. ACM 48(4): 648-685 (2001) - [c52]Lise Getoor, Nir Friedman, Daphne Koller, Benjamin Taskar:
Learning Probabilistic Models of Relational Structure. ICML 2001: 170-177 - [c51]Dana Pe'er, Aviv Regev, Gal Elidan, Nir Friedman:
Inferring subnetworks from perturbed expression profiles. ISMB (Supplement of Bioinformatics) 2001: 215-224 - [c50]Eran Segal, Benjamin Taskar, Audrey P. Gasch, Nir Friedman, Daphne Koller:
Rich probabilistic models for gene expression. ISMB (Supplement of Bioinformatics) 2001: 243-252 - [c49]Noam Slonim, Nir Friedman, Naftali Tishby:
Agglomerative Multivariate Information Bottleneck. NIPS 2001: 929-936 - [c48]Yoseph Barash, Nir Friedman:
Context-specific Bayesian clustering for gene expression data. RECOMB 2001: 12-21 - [c47]Amir Ben-Dor, Nir Friedman, Zohar Yakhini:
Class discovery in gene expression data. RECOMB 2001: 31-38 - [c46]Nir Friedman, Matan Ninio, Itsik Pe'er, Tal Pupko:
A structural EM algorithm for phylogenetic inference. RECOMB 2001: 132-140 - [c45]Tal El-Hay, Nir Friedman:
Incorporating Expressive Graphical Models in VariationalApproximations: Chain-graphs and Hidden Variables. UAI 2001: 136-143 - [c44]Gal Elidan, Nir Friedman:
Learning the Dimensionality of Hidden Variables. UAI 2001: 144-151 - [c43]Nir Friedman, Ori Mosenzon, Noam Slonim, Naftali Tishby:
Multivariate Information Bottleneck. UAI 2001: 152-161 - [c42]Yoseph Barash, Gill Bejerano, Nir Friedman:
A Simple Hyper-Geometric Approach for Discovering Putative Transcription Factor Binding Sites. WABI 2001: 278-293 - [i4]Nir Friedman, Joseph Y. Halpern:
Belief Revision: A Critique. CoRR cs.AI/0103020 (2001) - 2000
- [j7]Amir Ben-Dor, Laurakay Bruhn, Nir Friedman, Iftach Nachman, Michèl Schummer, Zohar Yakhini:
Tissue Classification with Gene Expression Profiles. J. Comput. Biol. 7(3-4): 559-583 (2000) - [j6]Nir Friedman, Michal Linial, Iftach Nachman, Dana Pe'er:
Using Bayesian Networks to Analyze Expression Data. J. Comput. Biol. 7(3-4): 601-620 (2000) - [j5]Nir Friedman, Joseph Y. Halpern, Daphne Koller:
First-order conditional logic for default reasoning revisited. ACM Trans. Comput. Log. 1(2): 175-207 (2000) - [c41]Gal Elidan, Noam Lotner, Nir Friedman, Daphne Koller:
Discovering Hidden Variables: A Structure-Based Approach. NIPS 2000: 479-485 - [c40]Amir Ben-Dor, Laurakay Bruhn, Nir Friedman, Iftach Nachman, Michèl Schummer, Zohar Yakhini:
Tissue classification with gene expression profiles. RECOMB 2000: 54-64 - [c39]Nir Friedman, Michal Linial, Iftach Nachman, Dana Pe'er:
Using Bayesian networks to analyze expression data. RECOMB 2000: 127-135 - [c38]Nir Friedman, Dan Geiger, Noam Lotner:
Likelihood Computations Using Value Abstraction. UAI 2000: 192-200 - [c37]Nir Friedman, Daphne Koller:
Being Bayesian about Network Structure. UAI 2000: 201-210 - [c36]Nir Friedman, Iftach Nachman:
Gaussian Process Networks. UAI 2000: 211-219
1990 – 1999
- 1999
- [j4]Nir Friedman, Joseph Y. Halpern:
Modeling Belief in Dynamic Systems, Part II: Revision and Update. J. Artif. Intell. Res. 10: 117-167 (1999) - [j3]Nir Friedman, Joseph Y. Halpern:
Belief Revision: A Critique. J. Log. Lang. Inf. 8(4): 401-420 (1999) - [c35]Nir Friedman, Lise Getoor:
Efficient learning using constrained sufficient statistics. AISTATS 1999 - [c34]Nir Friedman, Moisés Goldszmidt, Abraham J. Wyner:
On the application of the bootstrap for computing confidence measures on features of induced Bayesian networks. AISTATS 1999 - [c33]Nir Friedman, Lise Getoor, Daphne Koller, Avi Pfeffer:
Learning Probabilistic Relational Models. IJCAI 1999: 1300-1309 - [c32]Joseph Y. Halpern, Nir Friedman:
Plausibility Measures and Default Reasoning: An Overview. LICS 1999: 130-135 - [c31]Xavier Boyen, Nir Friedman, Daphne Koller:
Discovering the Hidden Structure of Complex Dynamic Systems. UAI 1999: 91-100 - [c30]Richard Dearden, Nir Friedman, David Andre:
Model based Bayesian Exploration. UAI 1999: 150-159 - [c29]Nir Friedman, Moisés Goldszmidt, Abraham J. Wyner:
Data Analysis with Bayesian Networks: A Bootstrap Approach. UAI 1999: 196-205 - [c28]Nir Friedman, Iftach Nachman, Dana Pe'er:
Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm. UAI 1999: 206-215 - [i3]Nir Friedman, Joseph Y. Halpern:
Modeling Belief in Dynamic Systems, Part II: Revision and Update. CoRR cs.AI/9903016 (1999) - 1998
- [c27]Craig Boutilier, Nir Friedman, Joseph Y. Halpern:
Belief Revision with Unreliable Observations. AAAI/IAAI 1998: 127-134 - [c26]Nir Friedman, Daphne Koller, Avi Pfeffer:
Structured Representation of Complex Stochastic Systems. AAAI/IAAI 1998: 157-164 - [c25]Richard Dearden, Nir Friedman, Stuart Russell:
Bayesian Q-Learning. AAAI/IAAI 1998: 761-768 - [c24]Nir Friedman, Moisés Goldszmidt, Thomas J. Lee:
Bayesian Network Classification with Continuous Attributes: Getting the Best of Both Discretization and Parametric Fitting. ICML 1998: 179-187 - [c23]Nir Friedman, Yoram Singer:
Efficient Bayesian Parameter Estimation in Large Discrete Domains. NIPS 1998: 417-423 - [c22]Nir Friedman:
The Bayesian Structural EM Algorithm. UAI 1998: 129-138 - [c21]Nir Friedman, Kevin P. Murphy, Stuart Russell:
Learning the Structure of Dynamic Probabilistic Networks. UAI 1998: 139-147 - [p1]Nir Friedman, Moisés Goldszmidt:
Learning Bayesian Networks with Local Structure. Learning in Graphical Models 1998: 421-459 - [i2]Nir Friedman, Joseph Y. Halpern, Daphne Koller:
First-Order Conditional Logic Revisited. CoRR cs.AI/9808005 (1998) - [i1]Nir Friedman, Joseph Y. Halpern:
Plausibility Measures and Default Reasoning. CoRR cs.AI/9808007 (1998) - 1997
- [b1]Nir Friedman:
Modeling beliefs in dynamic systems. Stanford University, USA, 1997 - [j2]Nir Friedman, Joseph Y. Halpern:
Modeling Belief in Dynamic Systems, Part I: Foundations. Artif. Intell. 95(2): 257-316 (1997) - [j1]Nir Friedman, Dan Geiger, Moisés Goldszmidt:
Bayesian Network Classifiers. Mach. Learn. 29(2-3): 131-163 (1997) - [c20]Nir Friedman:
Learning Belief Networks in the Presence of Missing Values and Hidden Variables. ICML 1997: 125-133 - [c19]Nir Friedman, Moisés Goldszmidt, David Heckerman, Stuart Russell:
Challenge: What is the Impact of Bayesian Networks on Learning? IJCAI (1) 1997: 10-15 - [c18]David Andre, Nir Friedman, Ronald Parr:
Generalized Prioritized Sweeping. NIPS 1997: 1001-1007 - [c17]Nir Friedman, Moisés Goldszmidt:
Sequential Update of Bayesian Network Structure. UAI 1997: 165-174 - [c16]Nir Friedman, Stuart Russell:
Image Segmentation in Video Sequences: A Probabilistic Approach. UAI 1997: 175-181 - 1996
- [c15]Nir Friedman, Moisés Goldszmidt:
Building Classifiers Using Bayesian Networks. AAAI/IAAI, Vol. 2 1996: 1277-1284 - [c14]Nir Friedman, Joseph Y. Halpern:
Plausibility Measures and Default Reasoning. AAAI/IAAI, Vol. 2 1996: 1297-1304 - [c13]Nir Friedman, Joseph Y. Halpern, Daphne Koller:
First-Order Conditional Logic Revisited. AAAI/IAAI, Vol. 2 1996: 1305-1312 - [c12]Nir Friedman, Moisés Goldszmidt:
Discretizing Continuous Attributes While Learning Bayesian Networks. ICML 1996: 157-165 - [c11]Nir Friedman, Joseph Y. Halpern:
Belief Revision: A Critique. KR 1996: 421-431 - [c10]Craig Boutilier, Nir Friedman, Moisés Goldszmidt, Daphne Koller:
Context-Specific Independence in Bayesian Networks. UAI 1996: 115-123 - [c9]Nir Friedman, Moisés Goldszmidt:
Learning Bayesian Networks with Local Structure. UAI 1996: 252-262 - [c8]Nir Friedman, Joseph Y. Halpern:
A Qualitative Markov Assumption and Its Implications for Belief Change. UAI 1996: 263-273 - [c7]Nir Friedman, Zohar Yakhini:
On the Sample Complexity of Learning Bayesian Networks. UAI 1996: 274-282 - 1995
- [c6]Ronen I. Brafman, Nir Friedman:
On Decision-Theoretic Foundations for Defaults. IJCAI 1995: 1458-1465 - [c5]Nir Friedman, Joseph Y. Halpern:
Plausibility Measures: A User's Guide. UAI 1995: 175-184 - 1994
- [c4]Nir Friedman, Joseph Y. Halpern:
Conditional Logics of Belief Change. AAAI 1994: 915-921 - [c3]Nir Friedman, Joseph Y. Halpern:
A Knowledge-Based Framework for Belief Change, Part II: Revision and Update. KR 1994: 190-201 - [c2]Nir Friedman, Joseph Y. Halpern:
On the Complexity of Conditional Logics. KR 1994: 202-213 - [c1]Nir Friedman, Joseph Y. Halpern:
A Knowledge-Based Framework for Belief change, Part I: Foundations. TARK 1994: 44-64
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:19 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint