


default search action
NIPS 1998: Denver, CO, USA
- Michael J. Kearns, Sara A. Solla, David A. Cohn:

Advances in Neural Information Processing Systems 11, [NIPS Conference, Denver, Colorado, USA, November 30 - December 5, 1998]. The MIT Press 1999, ISBN 0-262-11245-0
Cognitive Science
- Nikhil Bhushan, Reza Shadmehr:

Evidence for a Forward Dynamics Model in Human Adaptive Motor Control. 3-9 - Ke Chen, DeLiang L. Wang:

Perceiving without Learning: From Spirals to Inside/Outside Relations. 10-16 - G. Bjorn Christianson, Suzanna Becker:

A Model for Associative Multiplication. 17-23 - Matthew N. Dailey, Garrison W. Cottrell, Thomas A. Busey:

Facial Memory Is Kernel Density Estimation (Almost). 24-30 - Masahiko Haruno, Daniel M. Wolpert, Mitsuo Kawato:

Multiple Paired Forward-Inverse Models for Human Motor Learning and Control. 31-37 - Bradley C. Love:

Utilizing lime: Asynchronous Binding. 38-44 - Zili Liu, Daphna Weinshall:

Mechanisms of Generalization in Perceptual Learning. 45-51 - Michael Mozer:

A Principle for Unsupervised Hierarchical Decomposition of Visual Scenes. 52-58
Neuroscience
- Joshua B. Tenenbaum:

Bayesian Modeling of Human Concept Learning. 59-68 - L. F. Abbott, Sen Song:

Temporally Asymmetric Hebbian Learning, Spike liming and Neural Response Variability. 69-75 - Péter Adorján, Klaus Obermayer:

Contrast Adaptation in Simple Cells by Changing the Transmitter Release Probability. 76-82 - Pierre Baraduc, Emmanuel Guigon, Yves Burnod:

Where Does the Population Vector of Motor Cortical Cells Point during Reaching Movements? 83-89 - Frances S. Chance, Sacha B. Nelson, L. F. Abbott:

Recurrent Cortical Amplification Produces Complex Cell Responses. 90-96 - Gal Chechik, Isaac Meilijson, Eytan Ruppin:

Neuronal Regulation Implements Efficient Synaptic Pruning. 97-103 - Sophie Denève, Alexandre Pouget, Peter E. Latham:

Divisive Normalization, Line Attractor Networks and Ideal Observers. 104-110 - Itay Gat, Naftali Tishby:

Synergy and Redundancy among Brain Cells of Behaving Monkeys. 111-117 - Tzyy-Ping Jung, Scott Makeig, Marissa Westerfield, Jeanne Townsend, Eric Courchesne, Terrence J. Sejnowski:

Analyzing and Visualizing Single-Trial Event-Related Potentials. 118-124 - Richard Kempter, Wulfram Gerstner, J. Leo van Hemmen:

Spike-Based Compared to Rate-Based Hebbian Learning. 125-131 - Amit Manwani, Christof Koch:

Signal Detection in Noisy Weakly-Active Dendrites. 132-138 - Christian Piepenbrock, Klaus Obermayer:

The Role of Lateral Cortical Competition in Ocular Dominance Development. 139-145 - Dmitry Rinberg, Hanan Davidowitz, Naftali Tishby:

Multi-Electrode Spike Sorting by Clustering Transfer Functions. 146-152 - Eero P. Simoncelli, Odelia Schwartz:

Modeling Surround Suppression in V1 Neurons with a Statistically Derived Normalization Model. 153-159 - Martin Stemmler, Christof Koch:

Information Maximization in Single Neurons. 160-166 - Hyoungsoo Yoon, Haim Sompolinsky:

The Effect of Correlations on the Fisher Information of Population Codes. 167-173
Theory
- Richard S. Zemel, Peter Dayan:

Distributional Population Codes and Multiple Motion Models. 174-182 - David Barber, Wim Wiegerinck:

Tractable Variational Structures for Approximating Graphical Models. 183-189 - Peter L. Bartlett, Vitaly Maiorov, Ron Meir:

Almost Linear VC Dimension Bounds for Piecewise Polynomial Networks. 190-196 - Anthony C. C. Coolen, David Saad:

Dynamics of Supervised Learning with Restricted Training Sets. 197-203 - Nello Cristianini, Colin Campbell, John Shawe-Taylor:

Dynamically Adapting Kernels in Support Vector Machines. 204-210 - A. Düring, Anthony C. C. Coolen, D. Sherrington:

Phase Diagram and Storage Capacity of Sequence-Storing Neural Networks. 211-217 - Giancarlo Ferrari-Trecate, Christopher K. I. Williams, Manfred Opper:

Finite-Dimensional Approximation of Gaussian Processes. 218-224 - Claudio Gentile, Manfred K. Warmuth:

Linear Hinge Loss and Average Margin. 225-231 - Didier Herschkowitz, Jean-Pierre Nadal:

Unsupervised and Supervised Clustering: The Mutual Information between Parameters and Observations. 232-238 - Shiro Ikeda, Shun-ichi Amari, Hiroyuki Nakahara:

Convergence of the Wake-Sleep Algorithm. 239-245 - Yoshiyuki Kabashima, David Saad:

The Belief in TAP. 246-252 - Grigoris I. Karakoulas, John Shawe-Taylor:

Optimizing Classifers for Imbalanced Training Sets. 253-259 - Michael J. Kearns, Lawrence K. Saul:

Inference in Multilayer Networks via Large Deviation Bounds. 260-266 - Friedrich Leisch, Adrian Trapletti, Kurt Hornik:

Stationarity and Stability of Autoregressive Neural Network Processes. 267-273 - Zhaoping Li, Peter Dayan:

Computational Differences between Asymmetrical and Symmetrical Networks. 274-280 - Wolfgang Maass, Eduardo D. Sontag:

A Precise Characterization of the Class of Languages Recognized by Neural Nets under Gaussian and Other Common Noise Distributions. 281-287 - Llew Mason, Peter L. Bartlett, Jonathan Baxter:

Direct Optimization of Margins Improves Generalization in Combined Classifiers. 288-294 - Ron Meir, Vitaly Maiorov:

On the Optimality of Incremental Neural Network Algorithms. 295-301 - Manfred Opper, Francesco Vivarelli:

General Bounds on Bayes Errors for Regression with Gaussian Processes. 302-308 - Manfred Opper, Ole Winther:

Mean Field Methods for Classification with Gaussian Processes. 309-315 - H. C. Rae, Peter Sollich, Anthony C. C. Coolen:

On-Line Learning with Restricted Training Sets: Exact Solution as Benchmark for General Theories. 316-322 - Akito Sakurai:

Tight Bounds for the VC-Dimension of Piecewise Polynomial Networks. 323-329 - Bernhard Schölkopf, Peter L. Bartlett, Alexander J. Smola, Robert C. Williamson:

Shrinking the Tube: A New Support Vector Regression Algorithm. 330-336 - N. S. Skantzos, Christian F. Beckmann, Anthony C. C. Coolen:

Discontinuous Recall Transitions Induced by Competition Between Short- and Long-Range Interactions in Recurrent Networks. 337-345 - Peter Sollich:

Learning Curves for Gaussian Processes. 344-350
Algorithms and Architecture
- Toshiyuki Tanaka:

A Theory of Mean Field Approximation. 351-360 - Hagai Attias:

Learning a Hierarchical Belief Network of Independent Factor Analyzers. 361-367 - Kristin P. Bennett, Ayhan Demiriz:

Semi-Supervised Support Vector Machines. 368-374 - Mauro Birattari, Gianluca Bontempi, Hugues Bersini:

Lazy Learning Meets the Recursive Least Squares Algorithm. 375-381 - Christopher M. Bishop:

Bayesian PCA. 382-388 - Andrew Blake, Ben North, Michael Isard:

Learning Multi-Class Dynamics. 389-395 - Xavier Boyen, Daphne Koller:

Approximate Learning of Dynamic Models. 396-402 - Thomas Briegel, Volker Tresp:

Fisher Scoring and a Mixture of Modes Approach for Approximate Inference and Learning in Nonlinear State Space Models. 403-409 - João F. G. de Freitas, Mahesan Niranjan, Arnaud Doucet, Andrew H. Gee:

Global Optimisation of Neural Network Models via Sequential Sampling. 410-416 - Nir Friedman, Yoram Singer:

Efficient Bayesian Parameter Estimation in Large Discrete Domains. 417-423 - Yoram Gdalyahu, Daphna Weinshall, Michael Werman:

A Randomized Algorithm for Pairwise Clustering. 424-430 - Zoubin Ghahramani, Sam T. Roweis:

Learning Nonlinear Dynamical Systems Using an EM Algorithm. 431-437 - Thore Graepel, Ralf Herbrich, Peter Bollmann-Sdorra, Klaus Obermayer:

Classification on Pairwise Proximity Data. 438-444 - Yves Grandvalet, Stéphane Canu:

Outcomes of the Equivalence of Adaptive Ridge with Least Absolute Shrinkage. 445-451 - Marcus Held, Jan Puzicha, Joachim M. Buhmann:

Visualizing Group Structure. 452-458 - Sepp Hochreiter, Jürgen Schmidhuber:

Source Separation as a By-Product of Regularization. 459-465 - Thomas Hofmann, Jan Puzicha, Michael I. Jordan:

Learning from Dyadic Data. 466-472 - Aapo Hyvärinen, Patrik O. Hoyer, Erkki Oja:

Sparse Code Shrinkage: Denoising by Nonlinear Maximum Likelihood Estimation. 473-479 - Charles Lee Isbell Jr., Paul A. Viola:

Restructuring Sparse High Dimensional Data for Effective Retrieval. 480-486 - Tommi S. Jaakkola, David Haussler:

Exploiting Generative Models in Discriminative Classifiers. 487-493 - Tony Jebara, Alex Pentland:

Maximum Conditional Likelihood via Bound Maximization and the CEM Algorithm. 494-500 - Balázs Kégl, Adam Krzyzak, Tamás Linder, Kenneth Zeger:

A Polygonal Line Algorithm for Constructing Principal Curves. 501-507 - Te-Won Lee, Michael S. Lewicki, Terrence J. Sejnowski:

Unsupervised Classification with Non-Gaussian Mixture Models Using ICA. 508-514 - Daniel D. Lee, Haim Sompolinsky:

Learning a Continuous Hidden Variable Model for Binary Data. 515-521 - Malik Magdon-Ismail, Amir F. Atiya:

Neural Networks for Density Estimation. 522-528 - Alan D. Marrs, Andrew R. Webb:

Exploratory Data Analysis Using Radial Basis Function Latent Variable Models. 529-535 - Sebastian Mika, Bernhard Schölkopf, Alexander J. Smola, Klaus-Robert Müller, Matthias Scholz, Gunnar Rätsch:

Kernel PCA and De-Noising in Feature Spaces. 536-542 - Andrew W. Moore:

Very Fast EM-Based Mixture Model Clustering Using Multiresolution Kd-Trees. 543-549 - Marcello Pelillo:

Replicator Equations, Maximal Cliques, and Graph Isomorphism. 550-556 - John C. Platt:

Using Analytic QP and Sparseness to Speed Training of Support Vector Machines. 557-563 - Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller:

Regularizing AdaBoost. 564-570 - Patrice Y. Simard, Léon Bottou, Patrick Haffner, Yann LeCun:

Boxlets: A Fast Convolution Algorithm for Signal Processing and Neural Networks. 571-577 - Yoram Singer, Manfred K. Warmuth:

Batch and On-Line Parameter Estimation of Gaussian Mixtures Based on the Joint Entropy. 578-584 - Alexander J. Smola, Thilo-Thomas Frieß, Bernhard Schölkopf:

Semiparametric Support Vector and Linear Programming Machines. 585-591 - Michael E. Tipping:

Probabilistic Visualisation of High-Dimensional Binary Data. 592-598 - Naonori Ueda, Ryohei Nakano, Zoubin Ghahramani, Geoffrey E. Hinton:

SMEM Algorithm for Mixture Models. 599-605 - Nuno Vasconcelos, Andrew Lippman:

Learning Mixture Hierarchies. 606-612 - Francesco Vivarelli, Christopher K. I. Williams:

Discovering Hidden Features with Gaussian Processes Regression. 613-619 - Grace Wahba, Xiwu Lin, Fangyu Gao, Dong Xiang, Ronald Klein, Barbara E. Klein:

The Bias-Variance Tradeoff and the Randomized GACV. 620-626 - Kevin R. Wheeler, Atam P. Dhawan:

Basis Selection for Wavelet Regression. 627-633 - Christopher K. I. Williams, Nicholas J. Adams:

DTs: Dynamic Trees. 634-640 - Alan L. Yuille, James M. Coughlan:

Convergence Rates of Algorithms for Visual Search: Detecting Visual Contours. 641-647
Implementation
- Liqing Zhang, Andrzej Cichocki:

Blind Separation of Filtered Sources Using State-Space Approach. 648-656 - Gert Cauwenberghs, James Waskiewicz:

Analog VLSI Cellular Implementation of the Boundary Contour System. 657-663 - Jung-Wook Cho, Soo-Young Lee:

Active Noise Canceling Using Analog Neuro-Chip with On-Chip Learning Capability. 664-670 - Richard Coggins, Raymond J. Wang, Marwan A. Jabri:

A Micropower CMOS Adaptive Amplitude and Shift Invariant Vector Quantiser. 671-677 - R. Timothy Edwards, Gert Cauwenberghs, Fernando J. Pineda:

Optimizing Correlation Algorithms for Hardware-Based Transient Classification. 678-684 - Ralph Etienne-Cummings, Viktor Gruev, Mohammed Abdel Ghani:

VLSI Implementation of Motion Centroid Localization for Autonomous Navigation. 685-691 - John G. Harris, Chiang-Jung Pu, José Carlos Príncipe:

A Neuromorphic Monaural Sound Localizer. 692-698 - Charles M. Higgins, Christof Koch:

An Integrated Vision Sensor for the Computation of Optical Flow Singular Points. 699-705 - Alan Stocker, Rodney J. Douglas:

Computation of Smooth Optical Flow in a Feedback Connected Analog Network. 706-712
Speech, Handwriting and Signal Processing
- Ping Zhou, Jim Austin, John Kennedy:

A High Performance k-NN Classifier Using a Binary Correlation Matrix Memory. 713-722 - Matthew Brand:

An Entropic Estimator for Structure Discovery. 723-729 - Michael S. Lewicki, Terrence J. Sejnowski:

Coding Time-Varying Signals Using Sparse, Shift-Invariant Representations. 730-736 - Christoph Neukirchen, Gerhard Rigoll:

Controlling the Complexity of HMM Systems by Regularization. 737-743 - David A. Nix, John E. Hogden:

Maximum-Likelihood Continuity Mapping (MALCOM): An Alternative to HMMs. 744-750
Visual Processing
- Lawrence K. Saul, Mazin G. Rahim:

Markov Processes on Curves for Automatic Speech Recognition. 751-760 - James M. Coughlan, Alan L. Yuille:

A Phase Space Approach to Minimax Entropy Learning and the Minutemax Approximations. 761-767 - Trevor Darrell:

Example-Based Image Synthesis of Articulated Figures. 768-774 - William T. Freeman, Egon C. Pasztor:

Learning to Estimate Scenes from Images. 775-781 - Sergey Ioffe, David A. Forsyth:

Learning to Find Pictures of People. 782-788 - Laurent Itti, Jochen Braun, Dale K. Lee, Christof Koch:

Attentional Modulation of Human Pattern Discrimination Psychophysics Reproduced by a Quantitative Model. 789-795 - Zhaoping Li:

A V1 Model of Pop Out and Asymmetty in Visual Search. 796-802 - P. Jonathon Phillips:

Support Vector Machines Applied to Face Recognition. 803-809 - Rajesh P. N. Rao, Daniel L. Ruderman:

Learning Lie Groups for Invariant Visual Perception. 810-816 - Ruth Rosenholtz:

General-Purpose Localization of Textured Image Regions. 817-823 - Ravi K. Sharma, Todd K. Leen, Misha Pavel:

Probabilistic Image Sensor Fusion. 824-830 - Karvel K. Thornber, Lance R. Williams:

Orientation, Scale, and Discontinuity as Emergent Properties of Illusory Contour Shape. 831-837
Applications
- Daphna Weinshall, David W. Jacobs, Yoram Gdalyahu:

Classification in Non-Metric Spaces. 838-846 - Shumeet Baluja:

Making Templates Rotationally Invariant. An Application to Rotated Digit Recognition. 847-853 - Shumeet Baluja:

Probabilistic Modeling for Face Orientation Discrimination: Learning from Labeled and Unlabeled Data. 854-860 - Dan Cornford, Ian T. Nabney, Christopher K. I. Williams:

Adding Constrained Discontinuities to Gaussian Process Models of Wind Fields. 861-867 - Gideon Dror, Halina Abramowicz, David Horn:

Vertex Identification in High Energy Physics Experiments. 868-874 - Eric Granger, Stephen Grossberg, Mark A. Rubin, William W. Streilein:

Familiarity Discrimination of Radar Pulses. 875-881 - Radek Grzeszczuk, Demetri Terzopoulos, Geoffrey E. Hinton:

Fast Neural Network Emulation of Dynamical Systems for Computer Animation. 882-888 - Jaakko Hollmén, Volker Tresp:

Call-Based Fraud Detection in Mobile Communication Networks Using a Hierarchical Regime-Switching Model. 889-895 - Benoit Huet, Andrew D. J. Cross, Edwin R. Hancock:

Graph Matching for Shape Retrieval. 896-902 - Amy McGovern, J. Eliot B. Moss:

Scheduling Straight-Line Code Using Reinforcement Learning and Rollouts. 903-909 - Baback Moghaddam, Tony Jebara, Alex Pentland:

Bayesian Modeling of Facial Similarity. 910-916 - John E. Moody, Matthew Saffell:

Reinforcement Learning for Trading. 917-923 - Nuria Oliver, Barbara Rosario, Alex Pentland:

Graphical Models for Recognizing Human Interactions. 924-930 - Klaus Prank, Julia Börger, Alexander von zur Mühlen, Georg Brabant, Christof Schöfl:

Independent Component Analysis of Intracellular Calcium Spike Data. 931-937 - Clay Spence, Paul Sajda:

Applications of Multi-Resolution Neural Networks to Mammography. 938-944 - Matthew M. Williamson, Roderick Murray-Smith, Volker Hansen:

Robot Docking Using Mixtures of Gaussians. 945-951
Control, Navigation and Planning
- David H. Wolpert, Kagan Tumer, Jeremy Frank:

Using Collective Intelligence to Route Internet Traffic. 952-960 - Mohammad A. Al-Ansari, Ronald J. Williams:

Robust, Efficient, Globally-Optimized Reinforcement Learning with the Parti-Game Algorithm. 961-967 - Leemon C. Baird III, Andrew W. Moore:

Gradient Descent for General Reinforcement Learning. 968-974 - Lyndon J. Brown, Gregory E. Gonye, James S. Schwaber:

Non-Linear PI Control Inspired by Biological Control Systems. 975-981 - Timothy X. Brown, Hui Tong, Satinder Singh:

Optimizing Admission Control while Ensuring Quality of Service in Multimedia Networks via Reinforcement Learning. 982-988 - Akira Hayashi, Nobuo Suematsu:

Viewing Classifier Systems as Model Free Learning in POMDPs. 989-995 - Michael J. Kearns, Satinder Singh:

Finite-Sample Convergence Rates for Q-Learning and Indirect Algorithms. 996-1002 - Sven Koenig:

Exploring Unknown Environments with Real-Time Search or Reinforcement Learning. 1003-1009 - John Loch:

The Effect of Eligibility Traces on Finding Optimal Memoryless Policies in Partially Observable Markov Decision Processes. 1010-1016 - Robert Moll, Andrew G. Barto, Theodore J. Perkins, Richard S. Sutton:

Learning Instance-Independent Value Functions to Enhance Local Search. 1017-1023 - Rémi Munos, Andrew W. Moore:

Barycentric Interpolators for Continuous Space and Time Reinforcement Learning. 1024-1030 - Ralph Neuneier, Oliver Mihatsch:

Risk Sensitive Reinforcement Learning. 1031-1037 - Eimei Oyama, Susumu Tachi:

Coordinate Transformation Learning of Hand Position Feedback Controller by Using Change of Position Error Norm. 1038-1044 - Jette Randløv:

Learning Macro-Actions in Reinforcement Learning. 1045-1051 - Masa-aki Sato, Shin Ishii:

Reinforcement Learning Based on On-Line EM Algorithm. 1052-1058 - Nobuo Suematsu, Akira Hayashi:

A Reinforcement Learning Algorithm in Partially Observable Environments Using Short-Term Memory. 1059-1065 - Richard S. Sutton, Satinder Singh, Doina Precup, Balaraman Ravindran:

Improved Switching among Temporally Abstract Actions. 1066-1072 - John K. Williams, Satinder Singh:

Experimental Results on Learning Stochastic Memoryless Policies for Partially Observable Markov Decision Processes. 1073-1080

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














